Department of Civil Engineering, Oregon State University, USA.
J Contam Hydrol. 2010 Mar 1;112(1-4):1-14. doi: 10.1016/j.jconhyd.2009.07.004. Epub 2009 Jul 15.
'Bioimmobilization' of redox-sensitive heavy metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In one approach, growth-limiting substrates are added to the subsurface to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated reductive precipitation ('bioreduction') of targeted contaminants. We present a theoretical framework for modeling this process that modifies conventional geochemical reaction path modeling to include thermodynamic descriptions for microbial growth and may be called biogeochemical reaction path modeling. In this approach, the actual microbial community is represented by a synthetic microbial community consisting of a collection of microbial groups; each with a unique growth equation that couples a specific pair of energy yielding redox reactions. The growth equations and their computed standard-state free energy yields are appended to the thermodynamic database used in conventional geochemical reaction path modeling, providing a direct coupling between chemical species participating in both microbial growth and geochemical reactions. To compute the biogeochemical reaction paths, growth substrates are reacted incrementally with the defined geochemical environment and the coupled equations are solved simultaneously to predict reaction paths that display changing microbial biomass, community composition (i.e. the fraction of total biomass in each microbial group), and the aqueous and mineral composition of the system, including aqueous speciation and oxidation state of the targeted contaminants. The approach, with growth equations derived from the literature using well-known bioenergetics principles, was used to predict the results of a laboratory microcosm experiment and an in situ field experiment that investigated the bioreduction of uranium. Predicted effects of ethanol or acetate addition on uranium concentration and speciation, major ion geochemistry, mineralogy, microbial biomass and community composition were in qualitative agreement with experimental observations although the available data precluded rigorous model testing. While originally developed for use in better understanding of bioimmobilization of heavy metals and radionuclides, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of other basic and applied biotechnology research settings.
正在研究将氧化还原敏感的重金属和放射性核素进行“生物固定化”,以此作为修复受污染地下水和沉积物的一种方法。在一种方法中,向地下添加生长受限的基质,以刺激目标土著微生物群体的活性,并创造有利于微生物介导的目标污染物还原沉淀(“生物还原”)的条件。我们提出了一个理论框架来模拟这个过程,该框架修改了传统的地球化学反应路径建模,以包括微生物生长的热力学描述,可以称之为生物地球化学反应路径建模。在这种方法中,实际的微生物群落由一个由一组微生物组成的合成微生物群落来表示;每个微生物群体都有一个独特的生长方程,该方程将一对特定的产能氧化还原反应耦合在一起。生长方程及其计算的标准状态自由能产率被附加到传统地球化学反应路径建模中使用的热力学数据库中,为参与微生物生长和地球化学反应的化学物质之间提供了直接耦合。为了计算生物地球化学反应路径,将生长基质与定义的地球化学环境逐步反应,并同时求解耦合方程,以预测显示微生物生物量、群落组成(即每个微生物群体中的总生物量的分数)以及系统的水相和矿物组成(包括水相形态和目标污染物的氧化态)不断变化的反应路径。该方法使用从文献中推导出来的生长方程,并利用众所周知的生物能量学原理,用于预测实验室微宇宙实验和原位现场实验的结果,这些实验研究了铀的生物还原。尽管可用数据排除了严格的模型测试,但预测的乙醇或乙酸添加对铀浓度和形态、主要离子地球化学、矿物学、微生物生物量和群落组成的影响与实验观察结果基本一致。虽然最初是为了更好地理解重金属和放射性核素的生物固定化而开发的,但该建模方法对于探索微生物生长和地球化学反应的耦合在各种其他基础和应用生物技术研究环境中是有用的。