Yasuda Muneki, Tanaka Kazuyuki
Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
Neural Comput. 2009 Nov;21(11):3130-78. doi: 10.1162/neco.2009.08-08-844.
Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.
玻尔兹曼机可被视为马尔可夫随机场。对于二元情况,它们在统计力学中等同于伊辛自旋模型。玻尔兹曼机中的学习系统是NP难问题之一。因此,在此背景下,一般我们必须使用近似方法来构建实用的学习算法。在这封信中,我们通过使用信念传播算法和线性响应近似(常被称为高级平均场方法),为玻尔兹曼机提出了新的实用学习算法。最后,我们通过数值实验展示了我们算法的有效性。