Suppr超能文献

玻尔兹曼机中的近似学习算法。

Approximate learning algorithm in Boltzmann machines.

作者信息

Yasuda Muneki, Tanaka Kazuyuki

机构信息

Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.

出版信息

Neural Comput. 2009 Nov;21(11):3130-78. doi: 10.1162/neco.2009.08-08-844.

Abstract

Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.

摘要

玻尔兹曼机可被视为马尔可夫随机场。对于二元情况,它们在统计力学中等同于伊辛自旋模型。玻尔兹曼机中的学习系统是NP难问题之一。因此,在此背景下,一般我们必须使用近似方法来构建实用的学习算法。在这封信中,我们通过使用信念传播算法和线性响应近似(常被称为高级平均场方法),为玻尔兹曼机提出了新的实用学习算法。最后,我们通过数值实验展示了我们算法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验