Suppr超能文献

Hormonal interactions with the proximal Na(+)-H+ exchanger.

作者信息

Gesek F A, Schoolwerth A C

机构信息

Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0160.

出版信息

Am J Physiol. 1990 Mar;258(3 Pt 2):F514-21. doi: 10.1152/ajprenal.1990.258.3.F514.

Abstract

Various types of catecholamine and peptide hormone receptors have been localized to the renal cortex, with the majority of these binding sites located on the proximal tubule. Both subtypes of alpha-adrenergic receptors, angiotensin II (ANG II), parathyroid hormone (PTH), and dopamine (DA) DA-1 receptors have all demonstrated binding sites on this nephron segment. One- to two-thirds of Na+ transport in the proximal nephron is proposed to be mediated by a Na(+)-H+ exchanger. Each of these hormones has been shown to alter Na(+)-H+ exchange activity. The purpose of this study was to examine the interactions of these various hormones on proximal nephron Na(+)-H+ exchange at both physiological and pharmacological concentrations. Na(+)-H+ exchange activity was determined in isolated rat proximal segments by assessing the uptake of 22Na+ that was suppressible by the Na(+)-H+ exchange inhibitor, ethylisopropylamiloride (EIPA). Time course studies indicated that a 1-min preincubation with the hormones followed by a 1-min exposure to 22Na+ was necessary to achieve a steady-state EIPA-suppressible 22Na+ uptake. Selective alpha-adrenergic agonists produced a maximum stimulation of 22Na+ uptake at approximately 10(-6) M final concentration (less than or equal to 192% above the control level of uptake); ANG II produced a maximum increase at 10(-12) M (an 82% increase above the control level). In contrast, PTH and DA inhibited 22Na+ uptake most effectively at 10(-8) M and 10(-6) M, respectively. When submaximal (10(-9) M) concentrations of alpha-agonists were incubated in combination with ANG II, a synergistic effect was observed only with selective alpha 2-agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验