Suppr超能文献

使用自然演员-评论家算法的机器人接触任务阻抗学习

Impedance learning for robotic contact tasks using natural actor-critic algorithm.

作者信息

Kim Byungchan, Park Jooyoung, Park Shinsuk, Kang Sungchul

机构信息

Center for Cognitive Robotics Research, Korea Institute of Science and Technology, Seoul, Korea.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Apr;40(2):433-43. doi: 10.1109/TSMCB.2009.2026289. Epub 2009 Aug 18.

Abstract

Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

摘要

与机器人相比,人类通过自适应调节手臂阻抗参数的能力在各种任务中表现出色。这种能力使我们即使在不确定的环境中也能成功执行接触任务。本文基于人类运动控制理论和机器学习方案,考虑了机器人接触任务的运动技能学习策略。我们的机器人学习方法采用基于平衡点控制理论的阻抗控制和强化学习来确定接触任务的阻抗参数。基于递归最小二乘滤波器的 episodic 自然演员评论家算法用于找到最优阻抗参数。通过对各种接触任务的动态模拟测试了所提方法的有效性。模拟结果表明,所提方法在环境不确定条件下优化了接触任务的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验