Suppr超能文献

植物如何应对铜缺乏?

How do plants respond to copper deficiency?

机构信息

Graduate School of Agriculture; Kyushu University; Fukuoka, Japan.

出版信息

Plant Signal Behav. 2008 Apr;3(4):231-2. doi: 10.4161/psb.3.4.5094.

Abstract

The transition metal copper is essential for all organisms yet excess copper is toxic because of production of free radicals via its free form. Therefore, the levels of copper are precisely regulated in a cell. Under copper depleted conditions, the expression of Cu/Zn superoxide dismutase (SOD) is downregulated and its function is compensated by Fe SOD in chloroplasts of higher plants. We presented evidence that a microRNA, miR398, is involved in this downregulation of Cu/Zn SOD genes in Arabidopsis thaliana when grown at low copper levels, corresponding to less than 1 microM Cu in tissue culture media. However, a green alga, Chlamydomonas reinhardtii, adjusts to copper depletion by modifying the photosynthetic apparatus from copper containing plastocyanin to iron containing cytochrome c(6). During evolution plants modified one of the main strategies to respond to copper deficiency probably to adapt to different metal environments.

摘要

过渡金属铜对所有生物都是必不可少的,但由于其游离形式产生自由基,过量的铜是有毒的。因此,细胞内的铜水平被精确地调节。在铜缺乏的情况下,Cu/Zn 超氧化物歧化酶(SOD)的表达下调,其功能由高等植物叶绿体中的 Fe SOD 补偿。我们提出的证据表明,当在低铜水平下生长时,拟南芥中的 microRNA miR398 参与了 Cu/Zn SOD 基因的下调,对应于组织培养介质中小于 1 microM 的 Cu。然而,绿藻莱茵衣藻通过将含有铜的质体蓝蛋白修改为含铁的细胞色素 c(6)来适应铜的缺乏。在进化过程中,植物可能修改了主要的应对铜缺乏的策略之一,以适应不同的金属环境。

相似文献

1
How do plants respond to copper deficiency?
Plant Signal Behav. 2008 Apr;3(4):231-2. doi: 10.4161/psb.3.4.5094.
3
Regulation of copper homeostasis by micro-RNA in Arabidopsis.
J Biol Chem. 2007 Jun 1;282(22):16369-78. doi: 10.1074/jbc.M700138200. Epub 2007 Apr 3.
6
Do Arabidopsis genes act together in plant acclimation to copper or zinc deficiency?
Plant Direct. 2019 Jul 1;3(7):e00150. doi: 10.1002/pld3.150. eCollection 2019 Jul.
7
PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts.
Plant Cell. 2003 Jun;15(6):1333-46. doi: 10.1105/tpc.011817.
8
SQUAMOSA promoter-binding protein-like 7 mediates copper deficiency response in the presence of high nitrogen in Arabidopsis thaliana.
Plant Cell Rep. 2019 Jul;38(7):835-846. doi: 10.1007/s00299-019-02422-0. Epub 2019 May 15.
9
Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5480-7. doi: 10.1073/pnas.1421545111. Epub 2014 Dec 2.
10
Copper and iron homeostasis in plants: the challenges of oxidative stress.
Antioxid Redox Signal. 2013 Sep 20;19(9):919-32. doi: 10.1089/ars.2012.5084. Epub 2013 Jan 23.

引用本文的文献

1
Micronutrient deficiency-induced oxidative stress in plants.
Plant Cell Rep. 2024 Aug 12;43(9):213. doi: 10.1007/s00299-024-03297-6.
3
Silicon nanoparticles trace elements toxicity: and its omics bases.
Front Plant Sci. 2024 Apr 3;15:1377964. doi: 10.3389/fpls.2024.1377964. eCollection 2024.
4
Response of Juvenile to the Combined Stressors of Elevated pCO and Excess Copper.
Plants (Basel). 2023 Mar 2;12(5):1140. doi: 10.3390/plants12051140.
5
Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops.
Int J Mol Sci. 2022 Jul 31;23(15):8519. doi: 10.3390/ijms23158519.
6
The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in , , .
Molecules. 2022 Jul 22;27(15):4671. doi: 10.3390/molecules27154671.
7
Green synthesis and characterization of copper nanoparticles for investigating their effect on germination and growth of wheat.
PLoS One. 2022 Jun 21;17(6):e0269987. doi: 10.1371/journal.pone.0269987. eCollection 2022.
9
Different response of perennial ryegrass-Epichloë endophyte symbiota to the elevated concentration of heavy metals in soil.
J Appl Genet. 2022 Feb;63(1):47-59. doi: 10.1007/s13353-021-00661-0. Epub 2021 Sep 21.
10
Transcriptome Analysis of and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss .
Front Plant Sci. 2020 Aug 5;11:1185. doi: 10.3389/fpls.2020.01185. eCollection 2020.

本文引用的文献

1
Regulation of copper homeostasis by micro-RNA in Arabidopsis.
J Biol Chem. 2007 Jun 1;282(22):16369-78. doi: 10.1074/jbc.M700138200. Epub 2007 Apr 3.
3
Between a rock and a hard place: trace element nutrition in Chlamydomonas.
Biochim Biophys Acta. 2006 Jul;1763(7):578-94. doi: 10.1016/j.bbamcr.2006.04.007. Epub 2006 Apr 26.
4
Copper cofactor delivery in plant cells.
Curr Opin Plant Biol. 2006 Jun;9(3):256-63. doi: 10.1016/j.pbi.2006.03.007. Epub 2006 Apr 17.
5
Copper-containing plastocyanin used for electron transport by an oceanic diatom.
Nature. 2006 May 18;441(7091):341-4. doi: 10.1038/nature04630. Epub 2006 Mar 29.
6
Regulation of phosphate homeostasis by MicroRNA in Arabidopsis.
Plant Cell. 2006 Feb;18(2):412-21. doi: 10.1105/tpc.105.038943. Epub 2005 Dec 30.
7
A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18730-5. doi: 10.1073/pnas.0507693102. Epub 2005 Dec 13.
8
Plant microRNA: a small regulatory molecule with big impact.
Dev Biol. 2006 Jan 1;289(1):3-16. doi: 10.1016/j.ydbio.2005.10.036. Epub 2005 Dec 1.
9
HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions.
J Biol Chem. 2006 Feb 3;281(5):2882-92. doi: 10.1074/jbc.M508333200. Epub 2005 Nov 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验