Wheeler Steven E, Moran Antonio, Pieniazek Susan N, Houk K N
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
J Phys Chem A. 2009 Sep 24;113(38):10376-84. doi: 10.1021/jp9058565.
Enthalpies for bond-forming reactions that are subject to organocatalysis have been predicted using the high-accuracy CBS-QB3 model chemistry and six DFT functionals. Reaction enthalpies were decomposed into contributions from changes in bonding and other intramolecular effects via the hierarchy of homodesmotic reactions. The order of the reaction exothermicities (aldol < Mannich approximately alpha-aminoxylation) arises primarily from changes in formal bond types mediated by contributions from secondary intramolecular interactions. In each of these reaction types, methyl substitution at the beta- and gamma-positions stabilizes the products relative to the unsubstituted case. The performance of six DFT functionals (B3LYP, B3PW91, B1B95, MPW1PW91, PBE1PBE, and M06-2X), MP2, and SCS-MP2 has been assessed for the prediction of these reaction enthalpies. Even though the PBE1PBE and M06-2X functionals perform well for the aldol and Mannich reactions, errors roughly double when these functionals are applied to the alpha-aminoxylation reactions. B3PW91 and B1B95, which offer modest accuracy for the aldol and Mannich reactions, yield reliable predictions for the two alpha-aminoxylation reactions. The excellent performance of the M06-2X and PBE1PBE functionals for aldol and Mannich reactions stems from the cancellation of sizable errors arising from inadequate descriptions of the underlying bond transformations and intramolecular interactions. SCS-MP2/cc-pVTZ performs most consistently across these three classes of reactions, although the reaction exothermicities are systematically underestimated by 1-3 kcal mol(-1). Conventional MP2, when paired with the cc-pVTZ basis set, performs somewhat better than SCS-MP2 for some of these reactions, particularly the alpha-aminoxylations. Finally, the merits of benchmarking DFT functionals for the set of simple chemically meaningful transformations underlying all bond-forming reactions are discussed.
已使用高精度CBS-QB3模型化学方法和六种密度泛函理论(DFT)泛函预测了受有机催化的成键反应的焓。通过同系等键反应层次,将反应焓分解为键变化和其他分子内效应的贡献。反应放热顺序(羟醛缩合反应<曼尼希反应≈α-氨基氧基化反应)主要源于由二级分子内相互作用贡献介导的形式键类型的变化。在每种反应类型中,β位和γ位的甲基取代相对于未取代的情况使产物更稳定。已评估了六种DFT泛函(B3LYP、B3PW91、B1B95、MPW1PW91、PBE1PBE和M06-2X)、MP2和SCS-MP2预测这些反应焓的性能。尽管PBE1PBE和M06-2X泛函在羟醛缩合反应和曼尼希反应中表现良好,但将这些泛函应用于α-氨基氧基化反应时,误差大致会翻倍。B3PW91和B1B95在羟醛缩合反应和曼尼希反应中提供的精度适中,对两种α-氨基氧基化反应给出了可靠的预测。M06-2X和PBE1PBE泛函在羟醛缩合反应和曼尼希反应中的出色表现源于抵消了因对潜在键转化和分子内相互作用描述不足而产生的相当大的误差。SCS-MP2/cc-pVTZ在这三类反应中表现最为一致,尽管反应放热系统地被低估了1-3千卡/摩尔(-1)。传统的MP2与cc-pVTZ基组结合使用时,在其中一些反应中,特别是α-氨基氧基化反应中,表现比SCS-MP2稍好。最后,讨论了对所有成键反应基础的一组简单化学意义转化进行DFT泛函基准测试的优点。