Minenkov Yury, Wang Heng, Wang Zhandong, Sarathy S Mani, Cavallo Luigi
King Abdullah University of Science and Technology (KAUST) , Physical Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia.
King Abdullah University of Science and Technology (KAUST) , Physical Science and Engineering Division (PSE), Clean Combustion Research Center (CCRC), 23955-6900 Thuwal, Saudi Arabia.
J Chem Theory Comput. 2017 Aug 8;13(8):3537-3560. doi: 10.1021/acs.jctc.7b00335. Epub 2017 Jul 10.
Computational electronic structure calculations are routinely undertaken to predict thermodynamic properties of various species. However, the application of highly accurate wave function theory methods, such as the "gold standard" coupled cluster approach including single, double, and partly triple excitations in perturbative fashion, CCSD(T), to large molecules is limited due to high computational cost. In this work, the promising domain based local pair natural orbital coupled cluster approach, DLPNO-CCSD(T), has been tested to reproduce 113 accurate formation enthalpies of medium-sized molecules (few dozens heavy atoms) important for bio- and combustion chemistry via the reaction based Feller-Peterson-Dixon approach. For comparison, eight density functional theory (B3LYP, B3LYP-D3, PBE0, PBE0-D3, M06, M06-2X, ωB97X-D3, and ωB97M-V) and MP2-based (B2PLYP-D3, PWPB95-D3, B2T-PLYP, B2T-PLYP-D, B2GP-PLYP, DSD-PBEP86-D3, SCS-MP2, and OO-SCS-MP2) methods have been tested. The worst performance has been obtained for the standard hybrid DFT functionals, PBE0 (mean unsigned error (MUE)/mean signed error (MSE) = 9.1/6.0 kcal/mol) and B3LYP (MUE/MSE = 13.5/-13.3 kcal/mol). The influence of an empirical dispersion correction term on these functionals' performance is not homogeneous: B3LYP performance is improved (B3LYP-D3 (MUE/MSE = 6.0/0.8 kcal/mol)); meanwhile PBE0 performance is worse (PBE0-D3 (MUE/MSE = 14.1/13.6 kcal/mol)). The Minnesota functionals, M06 (MUE/MSE = 3.8/-2.0 kcal/mol) and M06-2X (MUE/MSE = 3.5/3.0 kcal/mol), and recently developed ωB97X-D3 (MUE/MSE = 3.2/0.2 kcal/mol) and ωB97M-V (MUE/MSE = 2.2/1.3 kcal/mol) methods provided significantly better formation enthalpies. Enthalpies of similar quality can also be obtained from some double hybrid methods (B2PLYP-D3 (MUE/MSE = 4.7/2.0 kcal/mol), PWPB95-D3 (MUE/MSE = 4.3/3.2 kcal/mol), B2T-PLYP (MUE/MSE = 4.1/-3.0 kcal/mol), and B2T-PLYP-D (MUE/MSE = 3.3/1.7 kcal/mol)). The two spin component scaled (SCS) MP2 methods resulted in even smaller errors (SCS-MP2 (MUE/MSE = 1.9/1.2 kcal/mol) and OO-SCS-MP2 (MUE/MSE = 1.6/0.1 kcal/mol)). The best performance was found for the frozen core (FC) DLPNO-CCSD(T) method with a MUE/MSE of 1.6/-1.2 kcal/mol. The performance of the DLPNO-CCSD(T) method can be further improved by running the post-SCF calculations on the B3LYP orbitals: the MUE/MSE for the DLPNO-CCSD(T,B3LYP) approximation is 1.2/-0.4 kcal/mol. We recommend the DLPNO-CCSD(T,B3LYP) method for black box applications in thermodynamics of medium-sized organic molecules when the canonical CCSD(T) calculations with basis sets of reasonable quality are prohibitively expensive.
通常会进行计算电子结构计算以预测各种物质的热力学性质。然而,由于计算成本高,诸如“金标准”耦合簇方法(包括微扰方式下的单、双和部分三激发,即CCSD(T))等高精度波函数理论方法在大分子中的应用受到限制。在这项工作中,基于有前景的域的局域对自然轨道耦合簇方法(DLPNO - CCSD(T))已通过基于反应的费勒 - 彼得森 - 迪克森方法进行测试,以重现113个对生物和燃烧化学重要的中等大小分子(几十个重原子)的精确生成焓。为作比较,还测试了八种密度泛函理论(B3LYP、B3LYP - D3、PBE0、PBE0 - D3、M06、M06 - 2X、ωB97X - D3和ωB97M - V)以及基于MP2的(B2PLYP - D3、PWPB95 - D3、B2T - PLYP、B2T - PLYP - D、B2GP - PLYP、DSD - PBEP86 - D3、SCS - MP2和OO - SCS - MP2)方法。标准杂化密度泛函PBE0(平均绝对误差(MUE)/平均符号误差(MSE)= 9.1/6.0千卡/摩尔)和B3LYP(MUE/MSE = 13.5/-13.3千卡/摩尔)的性能最差。经验色散校正项对这些泛函性能的影响并不均匀:B3LYP的性能有所改善(B3LYP - D3(MUE/MSE = 6.0/0.8千卡/摩尔));与此同时,PBE0的性能更差(PBE0 - D3(MUE/MSE = 14.1/13.6千卡/摩尔))。明尼苏达泛函M06(MUE/MSE = 3.8/-2.0千卡/摩尔)和M06 - 2X(MUE/MSE = 3.5/3.0千卡/摩尔)以及最近开发的ωB97X - D3(MUE/MSE = 3.2/0.2千卡/摩尔)和ωB97M - V(MUE/MSE = 2.2/1.3千卡/摩尔)方法提供了明显更好的生成焓。一些双杂化方法(B2PLYP - D3(MUE/MSE = 4.7/2.0千卡/摩尔)、PWPB95 - D3(MUE/MSE = 4.3/3.2千卡/摩尔)、B2T - PLYP(MUE/MSE = 4.1/-3.0千卡/摩尔)和B2T - PLYP - D(MUE/MSE = 3.3/1.7千卡/摩尔))也能得到质量相近的焓。两种自旋分量缩放(SCS)的MP2方法产生的误差甚至更小(SCS - MP2(MUE/MSE = 1.9/1.2千卡/摩尔)和OO - SCS - MP2(MUE/MSE = 1.6/0.1千卡/摩尔))。对于冻结核心(FC)DLPNO - CCSD(T)方法,发现其性能最佳,MUE/MSE为1.6/-1.2千卡/摩尔。通过在B3LYP轨道上进行自洽场后计算,可以进一步提高DLPNO - CCSD(T)方法的性能:DLPNO - CCSD(T,B3LYP)近似的MUE/MSE为1.2/-0.4千卡/摩尔。当使用合理质量基组的规范CCSD(T)计算成本过高时,我们推荐DLPNO - CCSD(T,B3LYP)方法用于中等大小有机分子热力学的黑箱应用。