Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan.
J Colloid Interface Sci. 2009 Nov 15;339(2):517-20. doi: 10.1016/j.jcis.2009.07.056. Epub 2009 Jul 28.
Choi and Kim [J. Colloid Interface Sci. 333 (2009) 672] proposed a new wall boundary condition for zeta-potential and surface charge density to describe the electrokinetic flow-induced currents in silica nanofluidic channels using the Poisson-Boltzmann (PB) model and the Poisson-Nernst-Planck (PNP) model. They showed that the results from the PNP model are in close agreement with the experimental data reported by van der Heyden et al. [Phys. Rev. Lett. 95 (2005) 116104]. In this paper, a theoretical model based on the PB model incorporating their proposed boundary condition is presented, which does not necessitate highly expensive computational effort. The results from our proposed model are shown to be in agreement with their numerical results of the PNP model. The present model also addresses the importance of the electrical resistance of reservoirs or the position of the electrodes for the measurement of the streaming current. Further, we point out that there is a misinterpretation in a comparison between their numerical results and those of van der Heyden et al.'s experiments. Finally, we conclude that the experimental data still cannot be predicted accurately by their proposed boundary condition and model, especially for the electrolyte concentration C(0)<10(-3)M.
崔和金[J.胶体界面科学 333 (2009) 672]提出了一种新的壁面边界条件,用于 zeta 电位和表面电荷密度,以描述使用泊松-玻尔兹曼 (PB) 模型和泊松-纳斯特-普朗克 (PNP) 模型的二氧化硅纳米流道中电动流引起的电流。他们表明,PNP 模型的结果与范德海登等人[物理评论快报 95 (2005) 116104]报道的实验数据非常吻合。在本文中,提出了一种基于 PB 模型并结合他们提出的边界条件的理论模型,该模型不需要昂贵的计算工作量。结果表明,我们提出的模型与他们的 PNP 模型的数值结果一致。本模型还解决了储层的电阻或电极位置对流动电流测量的重要性。此外,我们指出,在比较他们的数值结果和范德海登等人的实验结果时存在误解。最后,我们得出结论,他们提出的边界条件和模型仍然不能准确预测实验数据,特别是对于电解质浓度 C(0)<10(-3)M 的情况。