Park H M, Lee J S, Kim T W
Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
J Colloid Interface Sci. 2007 Nov 15;315(2):731-9. doi: 10.1016/j.jcis.2007.07.007. Epub 2007 Aug 2.
In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.
在电渗流分析中,内部电势通常由泊松 - 玻尔兹曼方程建模。泊松 - 玻尔兹曼方程是基于热力学平衡假设推导出来的,其中离子分布不受流体流动影响。虽然这对于通过直微通道的稳定电渗流是一个合理的假设,但在一些重要情况下,离子的对流输运具有显著影响。在这些情况下,有必要采用能斯特 - 普朗克方程而非泊松 - 玻尔兹曼方程来对内部电场进行建模。在本工作中,针对离子对流输运不可忽略的各种微通道中的电渗流,将能斯特 - 普朗克方程的预测结果与泊松 - 玻尔兹曼方程的预测结果进行了比较。