Suppr超能文献

基于集成独立成分选择的微阵列数据分类

Microarray data classification based on ensemble independent component selection.

作者信息

Liu Kun-Hong, Li Bo, Wu Qing-Qiang, Zhang Jun, Du Ji-Xiang, Liu Guo-Yan

机构信息

Software School of Xiamen University, Xiamen, Fujian, 361005, China.

出版信息

Comput Biol Med. 2009 Nov;39(11):953-60. doi: 10.1016/j.compbiomed.2009.07.006. Epub 2009 Aug 28.

Abstract

Independent component analysis (ICA) has been widely deployed to the analysis of microarray datasets. Although it was pointed out that after ICA transformation, different independent components (ICs) are of different biological significance, the IC selection problem is still far from fully explored. In this paper, we propose a genetic algorithm (GA) based ensemble independent component selection (EICS) system. In this system, GA is applied to select a set of optimal IC subsets, which are then used to build diverse and accurate base classifiers. Finally, all base classifiers are combined with majority vote rule. To show the validity of the proposed method, we apply it to classify three DNA microarray data sets involving various human normal and tumor tissue samples. The experimental results show that our ensemble method obtains stable and satisfying classification results when compared with several existing methods.

摘要

独立成分分析(ICA)已被广泛应用于微阵列数据集的分析。尽管有人指出,在ICA变换后,不同的独立成分(IC)具有不同的生物学意义,但IC选择问题仍远未得到充分探索。在本文中,我们提出了一种基于遗传算法(GA)的集成独立成分选择(EICS)系统。在该系统中,GA用于选择一组最优的IC子集,然后用于构建多样且准确的基分类器。最后,所有基分类器通过多数投票规则进行组合。为了验证所提方法的有效性,我们将其应用于对三个涉及各种人类正常和肿瘤组织样本的DNA微阵列数据集进行分类。实验结果表明,与几种现有方法相比,我们的集成方法获得了稳定且令人满意的分类结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验