Kim Dongwook, Brédas Jean-Luc
School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
J Am Chem Soc. 2009 Aug 19;131(32):11371-80. doi: 10.1021/ja809924t.
We have used density functional theory (DFT) and time-dependent DFT to investigate the geometric and electronic structure and the optical properties of the phosphorescent platinum compounds: Pt(II) (2-(4',6'-difluorophenyl)pyridinato-N,C(2)')(2,4-pentanedionato-O,O) (FPt1) and Pt(II) (2-(4',6'-difluorophenyl)pyridinato-N,C(2)')(1,3-propanedionato-O,O) (FPt0). We first examined isolated compounds (monomers) and evaluated their photophysical properties at the ground-state and lowest triplet excited-state (T(1)) geometries; the characteristics of the S(0) --> T(1) transitions are nearly identical in both compounds. Dimers of FPt0 and of FPt1 were then studied in order to shed light, at least qualitatively, on the respective role of Pt-Pt bimetallic interactions and interligand pi-pi interactions in the formation of excimer structures. While the Pt-Pt interactions are critical for excimer formation, the interligand pi-pi interactions also play a significant role in determining the optimal excimer geometry and the magnitude of the phosphorescence energy lowering in going from the monomer to the aggregated dimer. The distorted cofacial-type excimer structures found for FPt1, with a Pt-Pt distance around 2.9 A and interligand distances around 3.5-3.8 A, lead to phosphorescence energy lowerings with respect to the monomer on the order of 0.7-0.96 eV, in very good agreement with experiment.
我们运用密度泛函理论(DFT)和含时密度泛函理论来研究磷光铂化合物的几何结构、电子结构及光学性质:Pt(II) (2-(4',6'-二氟苯基)吡啶-N,C(2)')(2,4-戊二酮-O,O)(FPt1)和Pt(II) (2-(4',6'-二氟苯基)吡啶-N,C(2)')(1,3-丙二酮-O,O)(FPt0)。我们首先研究了孤立化合物(单体),并在基态和最低三重激发态(T(1))几何结构下评估了它们的光物理性质;两种化合物中S(0)→T(1)跃迁的特征几乎相同。接着研究了FPt0和FPt1的二聚体,以便至少定性地阐明Pt-Pt双金属相互作用和配体间π-π相互作用在准分子结构形成中各自所起的作用。虽然Pt-Pt相互作用对准分子形成至关重要,但配体间π-π相互作用在确定最佳准分子几何结构以及从单体到聚集二聚体时磷光能量降低的幅度方面也起着重要作用。对于FPt1发现的扭曲共面型准分子结构,Pt-Pt距离约为2.9 Å,配体间距离约为3.5 - 3.8 Å,导致相对于单体的磷光能量降低约0.7 - 0.96 eV(电子伏特),与实验结果非常吻合。