Lee Haofu, Ting Kang, Nelson Michael, Sun Nichole, Sung Sang-Jin
Resident, Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.
Am J Orthod Dentofacial Orthop. 2009 Sep;136(3):367-74. doi: 10.1016/j.ajodo.2008.08.023.
The aims of this study were to develop a method for constructing a 3-dimensional finite-element model (FEM) of the maxilla and to evaluate the effects of transverse expansion on the status of various midpalatal sutures.
A 3-dimensional FEM of the craniofacial complex was developed by using computed-tomography images and Bionix modeling software (version 3.0, CANTIBio, Suwon, Korea). To evaluate the differences between transverse expansion forces in the solid model (maxilla without a midpalatal suture), the fused model (maxilla with suture elements), and the patent model (maxilla without suture elements), transverse expansion forces of 100 g were applied bilaterally to the maxillary first premolars and the first molars.
The fused model expressed a stress pattern similar to that of the solid model, except for the decreased first principal stress concentration in the incisive foramen area. The patent model, however, had a unique stress pattern, with the stress translated superiorly to the nasal area. The anterior nasal spine and the central incisors moved downward and backward in both solid and fused models but moved primarily downward with a slight backward movement of the anterior nasal spine in the patent model.
Clinical observations of maxillary expansion can be explained by different suture statuses. This efficient and customized FEM model can be used to predict craniofacial responses to biomechanics in patients.
本研究的目的是开发一种构建上颌骨三维有限元模型(FEM)的方法,并评估横向扩展对上颌中缝不同状态的影响。
利用计算机断层扫描图像和Bionix建模软件(3.0版,CANTIBio,韩国水原)构建颅面复合体的三维有限元模型。为了评估实体模型(无腭中缝的上颌骨)、融合模型(有缝元件的上颌骨)和开放模型(无缝元件的上颌骨)之间横向扩展力的差异,在双侧上颌第一前磨牙和第一磨牙上施加100g的横向扩展力。
融合模型表现出与实体模型相似的应力模式,但切牙孔区域的第一主应力集中有所降低。然而,开放模型有独特的应力模式,应力向上转移到鼻腔区域。在实体模型和融合模型中,前鼻棘和中切牙均向下和向后移动,但在开放模型中,主要是向下移动,前鼻棘略有向后移动。
上颌扩展的临床观察结果可由不同的缝状态来解释。这种高效且定制的有限元模型可用于预测患者对生物力学的颅面反应。