Horta Bruno Araújo Cautiero, Sodero Ana Carolina Rennó, de Alencastro Ricardo Bicca
Physical Organic Chemistry Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, lab. 609, Rio de Janeiro, RJ 21941-909, Brazil.
J Mol Graph Model. 2009 Oct;28(3):287-96. doi: 10.1016/j.jmgm.2009.08.007. Epub 2009 Aug 15.
The vascular endothelial growth factors are key mediators of angiogenesis and are also related to several physiological processes such as monocyte chemotaxis, dendritic cell development, hematopoietic stem cell survival, and many others. PlGF, VEGF, VEGFB, VEGFC and VEGFD were identified as members of the vascular endothelial growth factor family. They act by differential activation of three receptors: Flt-1, KDR and Flt-4. PlGF and VEGFB only activate Flt-1. VEGF activates both Flt-1 and KDR. VEGFC and VEGFD activate KDR and Flt-4. The available three dimensional structures of VEGF and PlGF, in complex with the domain-2 of Flt-1, show that both proteins bind in a very similar way to Flt-1 receptor. Here we construct the three dimensional model of the domain-2 of KDR receptor using the same domain of Flt-1 as template. We also construct the model complexes VEGF/KDR, VEGFB/Flt-1, VEGFB/KDR and PlGF/KDR. Molecular dynamics simulations with explicit solvent are carried out on eleven molecular systems: unbound VEGF, VEGF/Flt-1(D2), VEGF/KDR(D2), unbound PlGF, PlGF/Flt-1(D2), PlGF/KDR(D2), unbound VEGFB, VEGFB/Flt-1(D2), VEGFB/KDR(D2), unbound Flt-1(D2) and unbound KDR(D2). We analyze protein-protein interactions, shape complementarity, charge complementarity and hydrogen bonds. As a coarse estimation of the desolvation penalties, we assume a correlation to the number of hydrogen bonds with solvent molecules that are lost upon complex formation. The results herein are consistent with the experimental selectivity profile (VEGF being able to activate both Flt-1 and KDR receptors while VEGFB and PlGF being only able to activate Flt-1), and provide a collection of evidences sustaining the complementarity of polar interactions as the main responsible for protein recognition and selectivity.
血管内皮生长因子是血管生成的关键介质,还与多种生理过程相关,如单核细胞趋化性、树突状细胞发育、造血干细胞存活等诸多过程。胎盘生长因子(PlGF)、血管内皮生长因子(VEGF)、血管内皮生长因子B(VEGFB)、血管内皮生长因子C(VEGFC)和血管内皮生长因子D(VEGFD)被确定为血管内皮生长因子家族的成员。它们通过对三种受体(Flt-1、KDR和Flt-4)的差异激活发挥作用。PlGF和VEGFB仅激活Flt-1。VEGF激活Flt-1和KDR。VEGFC和VEGFD激活KDR和Flt-4。VEGF和PlGF与Flt-1的结构域2形成的复合物的现有三维结构表明,这两种蛋白质与Flt-1受体的结合方式非常相似。在此,我们以Flt-1的相同结构域为模板构建KDR受体结构域2的三维模型。我们还构建了VEGF/KDR、VEGFB/Flt-1、VEGFB/KDR和PlGF/KDR的模型复合物。对11个分子系统进行了含显式溶剂的分子动力学模拟:未结合的VEGF、VEGF/Flt-1(D2)、VEGF/KDR(D2)、未结合的PlGF、PlGF/Flt-1(D2)、PlGF/KDR(D2)、未结合的VEGFB、VEGFB/Flt-1(D2)、VEGFB/KDR(D2)、未结合的Flt-1(D2)和未结合的KDR(D2)。我们分析了蛋白质-蛋白质相互作用、形状互补性、电荷互补性和氢键。作为去溶剂化惩罚的粗略估计,我们假设其与复合物形成时失去的与溶剂分子的氢键数量相关。本文的结果与实验选择性概况一致(VEGF能够激活Flt-1和KDR受体,而VEGFB和PlGF仅能激活Flt-1),并提供了一系列证据支持极性相互作用的互补性是蛋白质识别和选择性的主要原因。