Suppr超能文献

靶向放射治疗的放射生物学

The radiobiology of targeted radiotherapy.

作者信息

Wheldon T E, O'Donoghue J A

机构信息

Beatson Oncology Centre, Belvidere Hospital, Glasgow, UK.

出版信息

Int J Radiat Biol. 1990 Jul;58(1):1-21. doi: 10.1080/09553009014551401.

Abstract

Targeted radiotherapy consists of biologically selective irradiation of malignant cells by means of radionuclides attached to tumour-seeking molecules. A variety of clinical strategies for targeted radiotherapy may be used, for which different normal tissues will be critical. A large number of radionuclides exist, emitting nuclear particles with a range of path lengths from nanometres to millimetres. An important feature of normal-tissue radiobiology is the dose-rate effect, which is especially marked for late-responding tissues. Radiobiological calculations imply that tolerance dose for targeted radiotherapy using low-LET emitters will depend strongly on the effective half-life of the radionuclide, which will be affected by pharmacokinetics and may vary between patients. Some strategies designed to improve the therapeutic radio (e.g. accelerated clearance of radionuclide) may have modulating effects on the tolerance dose. Tumour response will be governed by the 'four Rs' (repair, repopulation, reoxygenation, redistribution) as well as by mechanisms peculiar to targeted radiotherapy. Analysis based on the extended linear quadratic model predicts that dose-rate effects will be of major importance for only a minority of tumours. Most of the radiation dose to tumour will usually be delivered over a time-scale of a few days. This might give insufficient time for tumour reoxygenation, making the use of hypoxic sensitizers appropriate. A special feature of targeted radiotherapy is the complex relationship between tumour curability and tumour size for different radionuclides. For long-range beta-emitters, microscopic tumours may be operationally resistant because of inefficient absorption of radionuclide disintegration energy in small volumes. Short-range emitters will be more efficient in sterilization of micrometastases but sterilization of larger tumours may require an unattainable degree of homogeneity of radionuclide distribution. Optimal use of targeted radiotherapy may require it to be combined with external-beam irradiation or chemotherapy. Experimental studies will be necessary to investigate those features of targeted radiotherapy which differ from external-beam irradiation. Future directions may include targeted radiotherapy of minimal numbers of tumour cells detected by use of molecular probes. Such applications call for use of short-range alpha-emitters and Auger emitters whose radiobiology will become increasingly important.

摘要

靶向放疗是指通过附着于肿瘤靶向分子的放射性核素对恶性细胞进行生物选择性照射。可采用多种靶向放疗的临床策略,而不同的正常组织对此至关重要。存在大量放射性核素,它们发射的核粒子的路径长度范围从纳米到毫米不等。正常组织放射生物学的一个重要特征是剂量率效应,这在晚反应组织中尤为明显。放射生物学计算表明,使用低线性能量传递发射体进行靶向放疗时的耐受剂量将强烈取决于放射性核素的有效半衰期,而有效半衰期会受到药代动力学的影响,并且在不同患者之间可能有所不同。一些旨在改善治疗性放疗的策略(例如加速放射性核素的清除)可能会对耐受剂量产生调节作用。肿瘤反应将受“四个R”(修复、再增殖、再氧合、再分布)以及靶向放疗特有的机制所支配。基于扩展线性二次模型的分析预测,剂量率效应仅对少数肿瘤至关重要。通常,大部分肿瘤辐射剂量将在几天的时间范围内给予。这可能没有足够的时间让肿瘤再氧合,因此使用低氧增敏剂是合适的。靶向放疗的一个特殊特征是不同放射性核素的肿瘤治愈率与肿瘤大小之间存在复杂关系。对于长程β发射体,微小肿瘤在操作上可能具有抗性,因为小体积中放射性核素衰变能量的吸收效率低下。短程发射体在微转移灶的杀灭方面将更有效,但杀灭较大肿瘤可能需要达到难以实现的放射性核素分布均匀度。靶向放疗的最佳应用可能需要将其与外照射放疗或化疗相结合。有必要进行实验研究来探究靶向放疗不同于外照射放疗的那些特征。未来的方向可能包括对使用分子探针检测到的极少数肿瘤细胞进行靶向放疗。此类应用需要使用短程α发射体和俄歇发射体,它们的放射生物学将变得越来越重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验