Suppr超能文献

天蓝色链霉菌中SigK与分化程序之间的相互调节。

Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor.

作者信息

Mao Xu-Ming, Zhou Zhan, Hou Xiao-Ping, Guan Wen-Jun, Li Yong-Quan

机构信息

Zhejiang University, College of Life Sciences, Hangzhou 310058, China.

出版信息

J Bacteriol. 2009 Nov;191(21):6473-81. doi: 10.1128/JB.00875-09. Epub 2009 Sep 4.

Abstract

Here we reported that deletion of SigK (SCO6520), a sigma factor in Streptomyces coelicolor, caused an earlier switch from vegetative mycelia to aerial mycelia and higher expression of chpE and chpH than that in the wild type. Loss of SigK also resulted in accelerated and enhanced production of antibiotics, actinorhodin, and undecylprodigiosin and increased expression of actII-orf4 and redD. These results suggested that SigK had a negative role in morphological transition and secondary metabolism. Furthermore, the sigK promoter (sigKp) activity gradually increased and sigK expression was partially dependent on SigK, but this dependence decreased during the developmental course of substrate mycelia. Meanwhile, two potentially nonspecific cleavages occurred between SigK and green fluorescent protein, and the SigK fusion proteins expressed under the constitutive promoter ermEp* sharply decreased and disappeared when aerial mycelia emerged. If expressed under sigKp, 3FLAG-SigK showed similar dynamic patterns but did not decrease as sharply as SigK expressed under ermEp*. These data suggested that the climbing expression of sigK might reduce the prompt degradation of SigK during vegetative hypha development for the proper timing of morphogenesis and that SigK vanished to remove the block for the emergence of aerial mycelia. Thus, we proposed that SigK had inhibitory roles on developmental events and that these inhibitory effects may be released by SigK degradation.

摘要

在此我们报道,天蓝色链霉菌中的一个σ因子SigK(SCO6520)的缺失导致从营养菌丝体到气生菌丝体的转变提前,且chpE和chpH的表达高于野生型。SigK的缺失还导致抗生素放线紫红素和十一烷基灵菌红素的产生加速且增加,以及actII-orf4和redD的表达增加。这些结果表明SigK在形态转变和次级代谢中起负作用。此外,sigK启动子(sigKp)的活性逐渐增加,sigK的表达部分依赖于SigK,但这种依赖性在底物菌丝体的发育过程中降低。同时,在SigK和绿色荧光蛋白之间发生了两个潜在的非特异性切割,当气生菌丝体出现时,在组成型启动子ermEp下表达的SigK融合蛋白急剧减少并消失。如果在sigKp下表达,3FLAG-SigK显示出类似的动态模式,但不像在ermEp下表达的SigK那样急剧下降。这些数据表明,sigK的逐步表达可能会减少营养菌丝体发育过程中SigK的快速降解,以实现形态发生的适当时间,并且SigK消失以消除气生菌丝体出现的障碍。因此,我们提出SigK对发育事件具有抑制作用,并且这些抑制作用可能通过SigK的降解而解除。

相似文献

1
Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor.
J Bacteriol. 2009 Nov;191(21):6473-81. doi: 10.1128/JB.00875-09. Epub 2009 Sep 4.
2
Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor.
J Bacteriol. 2013 May;195(9):2072-8. doi: 10.1128/JB.00040-13. Epub 2013 Mar 1.
3
Involvement of SigT and RstA in the differentiation of Streptomyces coelicolor.
FEBS Lett. 2009 Oct 6;583(19):3145-50. doi: 10.1016/j.febslet.2009.09.025. Epub 2009 Sep 13.
4
SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145.
Acta Biochim Biophys Sin (Shanghai). 2008 Oct;40(10):877-82.
6
A Regulatory Gene SCO2140 is Involved in Antibiotic Production and Morphological Differentiation of Streptomyces coelicolor A3(2).
Curr Microbiol. 2016 Aug;73(2):196-201. doi: 10.1007/s00284-016-1050-8. Epub 2016 Apr 25.
9
Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor.
Appl Microbiol Biotechnol. 2017 Jul;101(14):5773-5783. doi: 10.1007/s00253-017-8339-9. Epub 2017 Jun 11.

引用本文的文献

1
Cross-Recognition of Promoters by the Nine SigB Homologues Present in A3(2).
Int J Mol Sci. 2021 Jul 22;22(15):7849. doi: 10.3390/ijms22157849.
2
A Novel Two-Component System, Encoded by the s/ Genes, Affects Morphology in Liquid Culture.
Front Microbiol. 2019 Jul 9;10:1568. doi: 10.3389/fmicb.2019.01568. eCollection 2019.
3
Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C.
J Ind Microbiol Biotechnol. 2018 Apr;45(4):271-279. doi: 10.1007/s10295-018-2011-y. Epub 2018 Feb 7.
4
Connecting Metabolic Pathways: Sigma Factors in spp.
Front Microbiol. 2017 Dec 19;8:2546. doi: 10.3389/fmicb.2017.02546. eCollection 2017.
5
An Alternative σ Factor, σ, Controls Avermectin Production and Multiple Stress Responses in .
Front Microbiol. 2017 Apr 24;8:736. doi: 10.3389/fmicb.2017.00736. eCollection 2017.
7
Function and evolution of two forms of SecDF homologs in Streptomyces coelicolor.
PLoS One. 2014 Aug 20;9(8):e105237. doi: 10.1371/journal.pone.0105237. eCollection 2014.
9
Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor.
J Bacteriol. 2013 May;195(9):2072-8. doi: 10.1128/JB.00040-13. Epub 2013 Mar 1.
10
Genome plasticity and systems evolution in Streptomyces.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S8. doi: 10.1186/1471-2105-13-S10-S8.

本文引用的文献

1
Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium.
Nat Rev Microbiol. 2009 Jan;7(1):36-49. doi: 10.1038/nrmicro1968.
3
hmgA, transcriptionally activated by HpdA, influences the biosynthesis of actinorhodin in Streptomyces coelicolor.
FEMS Microbiol Lett. 2008 Mar;280(2):219-25. doi: 10.1111/j.1574-6968.2008.01070.x. Epub 2008 Feb 4.
5
SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor.
Mol Microbiol. 2007 May;64(3):602-13. doi: 10.1111/j.1365-2958.2007.05674.x.
6
ATP synthase: subunit-subunit interactions in the stator stalk.
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1162-70. doi: 10.1016/j.bbabio.2006.04.007. Epub 2006 Apr 19.
9
Regional organization of gene expression in Streptomyces coelicolor.
Gene. 2005 Jun 20;353(1):53-66. doi: 10.1016/j.gene.2005.03.042.
10
Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae.
J Bacteriol. 2005 May;187(10):3572-80. doi: 10.1128/JB.187.10.3572-3580.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验