CNR-IMEM, University Campus, Viale G.P. Usberti 37/A, 43100 Parma, Italy.
ACS Nano. 2009 Oct 27;3(10):3158-64. doi: 10.1021/nn900558q.
Tailoring the structural and electronic properties of 3D nanostructures via bottom-up techniques would pave the way for novel low-cost applications. One of such possibilities is offered by ZnO branched nanostructures like tetrapods, that have recently attracted attention for nanodevice applications from nanoelectronics to drug delivery. The conventional picture is that ZnO arms are thermodynamically stable only in the wurtzite phase. Here, we provide the first experimental evidence of unpredicted extended zinc blend phases (50-60 nm long) embedded in the arms of ZnO wurtzite tetrapods. In particular, decisive evidence is obtained from the one-to-one correlation between high lateral resolution cathodoluminescence spectroscopy, monochromatic contrast maps, and atomic resolution transmission electron microscopy images of ZnO single TPs. This observation is not specific to ZnO and can have a general validity for the understanding of the nucleation mechanisms in semiconducting 3D nanostructures for device applications.
通过自下而上的技术来调整 3D 纳米结构的结构和电子特性,将为新型低成本应用铺平道路。其中一种可能性是通过 ZnO 分支纳米结构(如四足体)来实现,最近它们在纳米电子学到药物输送等领域的纳米器件应用方面引起了人们的关注。传统观点认为,只有在纤锌矿相中 ZnO 臂才具有热力学稳定性。在这里,我们提供了第一个实验证据,证明在 ZnO 纤锌矿四足体的臂中嵌入了未预测的扩展闪锌矿相(50-60nm 长)。特别是,从高横向分辨率的阴极荧光光谱学、单色对比图以及 ZnO 单四足体的原子分辨率透射电子显微镜图像之间的一一对应关系中获得了决定性的证据。这一观察结果不仅对 ZnO 具有特异性,而且对于理解用于器件应用的半导体 3D 纳米结构的成核机制具有普遍的有效性。