Suppr超能文献

从细胞到整体的肝转运的机制建模:在那拉曲坦和非索非那定中的应用。

Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine.

机构信息

Drug Safety, Non-Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

Mol Pharm. 2009 Nov-Dec;6(6):1716-33. doi: 10.1021/mp8002495.

Abstract

A mechanistic model was applied to quantitatively derive the kinetic parameters from in vitro hepatic uptake transport data. These parameters were used as input to simulate in vivo elimination using a fully mechanistic physiologically based pharmacokinetic (PBPK) model. Fexofenadine and napsagatran, both BDDCS class 3 drugs, were chosen as model compounds. In rat, both compounds are hardly metabolized and are eliminated unchanged mostly through biliary excretion. Uptake was estimated in this study based on plated rat hepatocytes, and a mechanistic model was used to derive the active and passive transport parameters, namely Michaelis-Menten uptake parameters (V(maxI) and K(mI,u)) together with passive diffusion (P(dif)) and nonspecific binding. Maximum transport velocity and passive diffusion were scaled to in vivo parameters (J(maxI) and PS(TC)) using hepatocellularity. Biliary excretion, through passive and active transport, was assessed from in vivo studies. These transport parameters were then used as input in a whole body physiologically based model in which the liver compartment was parametrized for the different passive and active transport processes. Each of the processes was linked to the free concentration in the relevant compartment. For napsagatran hepatic uptake, no passive diffusion and no binding were detected in vitro besides the active transport (K(mI,u) = 88.4 +/- 8.1 microM, V(maxI) = 384 +/- 19 pmol/mg/min). Fexofenadine was rapidly taken up into rat hepatocytes (K(mI,u) = 271 +/- 35 microM, V(maxI) = 3162 +/- 274 pmol/mg/min), and some contribution of passive diffusion to the uptake (P(dif) = 2.08 +/- 0.67 microL/mg/min) was observed. For fexofenadine, the biliary export rate was found to be slower than the uptake, leading to drug accumulation in liver. No accumulation was observed for napsagatran where excretion was faster than hepatic uptake. Observed plasma, liver and bile concentration time profiles were compared to PBPK simulations based on scaled in vitro transport kinetic parameters. An uncertainty analysis indicated that for both compounds the scaled in vitro uptake clearance had to be adjusted with an additional empirical scaling factor of 10 to match the plasma and liver concentrations and biliary excretion profiles. Applying this model, plasma clearance (CL(P)) and half-life (t(1/2)), maximum liver concentration (C(maxL)) and fraction excreted in bile (f(bile)) were predicted within 2-fold. In vitro uptake data had most impact on the simulated plasma and biliary excretion profiles, while accurate simulations of liver concentrations required also quantitative estimates of biliary excretion transport. This study indicated that the mechanistic model allowed for accurate evaluation of in vitro experiments; and the scaled kinetic parameters of hepatic uptake transport enabled the prediction of in vivo PK profiles and plasma clearances, using PBPK modeling.

摘要

应用一种机制模型从体外肝摄取转运数据中定量推导动力学参数。这些参数被用作输入,使用完全基于机制的生理药代动力学(PBPK)模型模拟体内消除。法莫替丁和那普沙肽,这两种 BDDCS 类 3 药物,被选为模型化合物。在大鼠中,这两种化合物几乎不被代谢,主要通过胆汁排泄而不变地消除。摄取在本研究中是基于贴壁大鼠肝细胞进行估计的,并且使用机制模型推导主动和被动转运参数,即米氏酶摄取参数(V(maxI)和 K(mI,u))以及被动扩散(P(dif))和非特异性结合。使用肝细胞比活度将最大转运速度和被动扩散转化为体内参数(J(maxI)和 PS(TC))。通过体内研究评估了胆汁排泄,通过被动和主动转运。这些转运参数然后被用作全身生理模型的输入,其中肝隔室被参数化为不同的被动和主动转运过程。每个过程都与相关隔室中的游离浓度相关联。对于那普沙肽的肝摄取,除了主动转运之外,在体外未检测到被动扩散和结合(K(mI,u)= 88.4 +/- 8.1 microM,V(maxI)= 384 +/- 19 pmol/mg/min)。法莫替丁被迅速摄取到大鼠肝细胞中(K(mI,u)= 271 +/- 35 microM,V(maxI)= 3162 +/- 274 pmol/mg/min),并且观察到摄取过程中存在一些被动扩散的贡献(P(dif)= 2.08 +/- 0.67 microL/mg/min)。对于法莫替丁,胆汁排泄率发现比摄取率慢,导致肝脏药物积累。对于那普沙肽,由于排泄速度快于肝摄取,因此没有观察到药物积累。观察到的血浆、肝和胆汁浓度时间曲线与基于比例体外转运动力学参数的 PBPK 模拟进行了比较。不确定性分析表明,对于这两种化合物,都必须调整比例体外摄取清除率,增加一个额外的经验比例因子 10,以匹配血浆和肝浓度以及胆汁排泄曲线。应用该模型,预测血浆清除率(CL(P))和半衰期(t(1/2))、最大肝浓度(C(maxL))和胆汁排泄分数(f(bile))在 2 倍以内。体外摄取数据对模拟的血浆和胆汁排泄曲线影响最大,而准确模拟肝浓度还需要定量估计胆汁排泄转运。本研究表明,该机制模型允许对体外实验进行准确评估;并且使用 PBPK 模型,肝摄取转运的比例动力学参数能够预测体内 PK 曲线和血浆清除率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验