Suppr超能文献

正常化均方误差分析在类耳蜗植入频谱减缩语音中的语音基频。

On normalized MSE analysis of speech fundamental frequency in the cochlear implant-like spectrally reduced speech.

机构信息

Institut TELECOM, TELECOM Bretagne, Unit Mixte de Recherche Centre National de la Recherche Scientifique 3192 Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, Brest, France.

出版信息

IEEE Trans Biomed Eng. 2010 Mar;57(3):572-7. doi: 10.1109/TBME.2009.2031097. Epub 2009 Sep 9.

Abstract

In this paper, we present a quantitative study on the speech fundamental frequency (F0) of the cochlear implant-like spectrally reduced speech (SRS). The SRS was synthesized from the subband amplitude and frequency modulations (AM and FM) of original clean speech utterances selected from the TI-digits database. The SRS synthesis algorithm was derived from the frequency amplitude modulation encoding (FAME) strategy, proposed by Nie et al., 2005. The normalized mses (NMSEs), calculated between the F0 of the original clean speech and that of the SRSs, were analyzed. The NMSEs analysis of F0 revealed the greater F0 distortion in the AM-based SRS, which is the acoustic simulation of present-day cochlear implants, compared to the FAME-based SRS. This evidence supports the fact that current cochlear implant users have difficulty in the speaker recognition task as reported by Zeng et al., 2005. Further, the analysis results showed that it is better to keep the rapidly varying FM components to reduce the F0 distortion in the FAME-based SRS at low spectral resolution.

摘要

在本文中,我们对类耳蜗植入频谱缩减语音(SRS)的语音基频(F0)进行了定量研究。SRS 是通过从 TI 数字数据库中选择的原始清晰语音的子带幅度和频率调制(AM 和 FM)合成的。SRS 合成算法源自 Nie 等人于 2005 年提出的频率幅度调制编码(FAME)策略。分析了原始清晰语音和 SRS 之间 F0 的归一化均方误差(NMSE)。F0 的 NMSE 分析表明,与基于 FAME 的 SRS 相比,基于 AM 的 SRS 的 F0 失真更大,这是当今耳蜗植入物的声学模拟。这一证据支持了 Zeng 等人报告的当前耳蜗植入物使用者在说话人识别任务中存在困难的事实。此外,分析结果表明,在低谱分辨率下,基于 FAME 的 SRS 中最好保留快速变化的 FM 分量以减少 F0 失真。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验