Wataya Yusuke, Naito Tomoharu, Sato Akira, Hiramoto Akiko, Kitade Yukio, Sasaki Takuma, Matsuda Akira, Fukushima Masakazu, Kim Hye-Sook
Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
Nucleic Acids Symp Ser (Oxf). 2009(53):291-2. doi: 10.1093/nass/nrp146.
1-(3-C-Ethynyl-beta-D-ribo-pentofuranosyl)cytosine (3'-Ethynylcytidine; ECyd), a ribonucleoside analog, has a potent cytotoxic activity against cancer cells. We have investigated the cancer-cell death induced by ECyd, focusing on its molecular mechanisms. In ECyd-treated cells, RNase L is activated and involved in c-jun NH(2)-terminal kinase (JNK) phosphorylation, followed by induction of mitochondria-dependent apoptosis. The mechanism of JNK phophorylation by RNase L was unknown. To investigate the mechanism, we performed the identification of RNase L-binding partners by proteomic approach using co-immunoprecipitation and mass spectrometry. We found that RNase L was associated with a protein (we named it Protein-190). At the same time, we observed that Protein-190 was amply phosphorylated. Furthermore, the participation of Protein-190 in the ECyd-induced apoptosis was supported by a knockdown experiment using small interfering RNA (siRNA). Thus, the number of ECyd-induced apoptotic cells was drastically decreased when Protein-190 was knocked-down. These results indicated Protein-190 as a regulator in apoptosis, and provide the possibility for a new clinical target in cancer chemotherapy.