Suppr超能文献

通过与任务相关的试验修剪来提高脑机接口的性能。

Improving BCI performance by task-related trial pruning.

机构信息

Department of Machine Learning, Berlin Institute of Technology, Franklinstr. 28/29, 10587 Berlin, Germany.

出版信息

Neural Netw. 2009 Nov;22(9):1295-304. doi: 10.1016/j.neunet.2009.08.006. Epub 2009 Aug 29.

Abstract

Noise in electroencephalography data (EEG) is an ubiquitous problem that limits the performance of brain computer interfaces (BCI). While typical EEG artifacts are usually removed by trial rejection or by filtering, noise induced in the data by the subject's failure to produce the required mental state is very harmful. Such "noise" effects are rather common, especially for naive subjects in their training phase and, thus, standard artifact removal methods would inevitably fail. In this paper, we present a novel method which aims to detect such defected trials taking into account the intended task by use of Relevant Dimensionality Estimation (RDE), a new machine learning method for denoising in feature space. In this manner, our method effectively "cleans" the training data and thus allows better BCI classification. Preliminary results conducted on a data set of 43 naive subjects show a significant improvement for 74% of the subjects.

摘要

脑电图(EEG)数据中的噪声是一个普遍存在的问题,限制了脑机接口(BCI)的性能。虽然通常可以通过试验拒绝或滤波来去除典型的 EEG 伪迹,但由于受试者未能产生所需的心理状态而在数据中引起的噪声是非常有害的。这种“噪声”效应相当常见,特别是对于训练阶段的新手受试者,因此,标准的伪迹去除方法不可避免地会失败。在本文中,我们提出了一种新方法,该方法旨在通过使用相关维度估计(RDE)来检测此类有缺陷的试验,这是一种用于特征空间去噪的新机器学习方法。通过这种方式,我们的方法有效地“清理”了训练数据,从而允许更好的 BCI 分类。对 43 名新手受试者的数据集进行的初步结果表明,有 74%的受试者的分类性能得到了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验