Institute for Infocomm Research, Agency for Science, Technology and Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632.
J Neural Eng. 2011 Aug;8(4):046035. doi: 10.1088/1741-2560/8/4/046035. Epub 2011 Jul 19.
Inherent changes that appear in brain signals when transferring from calibration to feedback sessions are a challenging but critical issue in brain-computer interface (BCI) applications. While previous studies have mostly focused on the adaptation of classifiers, in this paper we study the feasibility and the importance of the adaptation of feature extraction in a self-paced BCI paradigm. First, we conduct calibration and feedback training on able-bodied naïve subjects using a new self-paced motor imagery BCI including the idle state. The online results suggest that the feature space constructed from calibration data may become ineffective during feedback sessions. Hence, we propose a new supervised method that learns from a feedback session to construct a more appropriate feature space, on the basis of the maximum mutual information principle between feedback signal, target signal and EEG. Specifically, we formulate the learning objective as maximizing a kernel-based mutual information estimate with respect to the spatial-spectral filtering parameters. We then derive a gradient-based optimization algorithm for the learning task. An experimental study is conducted using offline simulation. The results show that the proposed method is able to construct effective feature spaces to capture the discriminative information in feedback training data and, consequently, the prediction error can be significantly reduced using the new features.
在从校准转移到反馈会话时,大脑信号中出现的固有变化是脑机接口 (BCI) 应用中的一个具有挑战性但至关重要的问题。虽然以前的研究主要集中在分类器的适应上,但在本文中,我们研究了在自我调节 BCI 范式中适应特征提取的可行性和重要性。首先,我们使用包括空闲状态在内的新的自我调节运动想象 BCI,对无经验的健康受试者进行校准和反馈训练。在线结果表明,从校准数据构建的特征空间在反馈会话期间可能变得无效。因此,我们提出了一种新的监督方法,该方法从反馈会话中学习,根据反馈信号、目标信号和 EEG 之间的最大互信息原理构建更合适的特征空间。具体来说,我们将学习目标表述为最大化基于核的互信息估计,相对于空间频谱滤波参数。然后,我们为学习任务推导了一个基于梯度的优化算法。离线模拟进行了实验研究。结果表明,所提出的方法能够构建有效的特征空间来捕获反馈训练数据中的判别信息,因此可以使用新特征显著降低预测误差。