Suppr超能文献

使用单核苷酸多态性标记的选定子集对荷斯坦公牛终身净效益的直接基因组值的预测能力。

Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers.

作者信息

Weigel K A, de los Campos G, González-Recio O, Naya H, Wu X L, Long N, Rosa G J M, Gianola D

机构信息

Department of Dairy Science, University of Wisconsin, Madison 53706, USA.

出版信息

J Dairy Sci. 2009 Oct;92(10):5248-57. doi: 10.3168/jds.2009-2092.

Abstract

The objective of the present study was to assess the predictive ability of subsets of single nucleotide polymorphism (SNP) markers for development of low-cost, low-density genotyping assays in dairy cattle. Dense SNP genotypes of 4,703 Holstein bulls were provided by the USDA Agricultural Research Service. A subset of 3,305 bulls born from 1952 to 1998 was used to fit various models (training set), and a subset of 1,398 bulls born from 1999 to 2002 was used to evaluate their predictive ability (testing set). After editing, data included genotypes for 32,518 SNP and August 2003 and April 2008 predicted transmitting abilities (PTA) for lifetime net merit (LNM$), the latter resulting from progeny testing. The Bayesian least absolute shrinkage and selection operator method was used to regress August 2003 PTA on marker covariates in the training set to arrive at estimates of marker effects and direct genomic PTA. The coefficient of determination (R(2)) from regressing the April 2008 progeny test PTA of bulls in the testing set on their August 2003 direct genomic PTA was 0.375. Subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP were created by choosing equally spaced and highly ranked SNP, with the latter based on the absolute value of their estimated effects obtained from the training set. The SNP effects were re-estimated from the training set for each subset of SNP, and the 2008 progeny test PTA of bulls in the testing set were regressed on corresponding direct genomic PTA. The R(2) values for subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP with largest effects (evenly spaced SNP) were 0.184 (0.064), 0.236 (0.111), 0.269 (0.190), 0.289 (0.179), 0.307 (0.228), 0.313 (0.268), and 0.322 (0.291), respectively. These results indicate that a low-density assay comprising selected SNP could be a cost-effective alternative for selection decisions and that significant gains in predictive ability may be achieved by increasing the number of SNP allocated to such an assay from 300 or fewer to 1,000 or more.

摘要

本研究的目的是评估单核苷酸多态性(SNP)标记子集对开发低成本、低密度基因分型检测方法在奶牛中的预测能力。美国农业部农业研究局提供了4703头荷斯坦公牛的密集SNP基因型。1952年至1998年出生的3305头公牛的子集用于拟合各种模型(训练集),1999年至2002年出生的1398头公牛的子集用于评估其预测能力(测试集)。编辑后,数据包括32518个SNP的基因型以及2003年8月和2008年4月的终身净效益(LNM$)预测传递能力(PTA),后者来自后代测试。采用贝叶斯最小绝对收缩和选择算子方法,将2003年8月的PTA对训练集中的标记协变量进行回归,以获得标记效应和直接基因组PTA的估计值。将测试集中公牛2008年4月后代测试PTA对其2003年8月直接基因组PTA进行回归,决定系数(R(2))为0.375。通过选择等间距且排名靠前的SNP创建了300、500、750、1000、1250、1500和2000个SNP的子集,后者基于从训练集中获得的估计效应的绝对值。针对每个SNP子集,从训练集中重新估计SNP效应,并将测试集中公牛2008年后代测试PTA对相应的直接基因组PTA进行回归。效应最大的300、500、750、1000、1250、1500和2000个SNP子集(等间距SNP)的R(2)值分别为0.184(0.064)、0.236(0.111)、0.269(0.190)、0.289(0.179)、0.307(0.228)、0.313(0.268)和0.322(0.291)。这些结果表明,包含选定SNP的低密度检测方法可能是一种具有成本效益的选择决策替代方法,并且通过将分配给此类检测方法的SNP数量从300个或更少增加到1000个或更多,可以显著提高预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验