Suppr超能文献

用于学习的布雷格曼散度及替代方法。

Bregman divergences and surrogates for learning.

作者信息

Nock Richard, Nielsen Frank

机构信息

Université Antilles-Guyane, CEREGMIA-UFR Droit et Sciences Economiques, Campus de Schoelcher, Schoelcher Cedex, Martinique, France.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2048-59. doi: 10.1109/TPAMI.2008.225.

Abstract

Bartlett et al. (2006) recently proved that a ground condition for surrogates, classification calibration, ties up their consistent minimization to that of the classification risk, and left as an important problem the algorithmic questions about their minimization. In this paper, we address this problem for a wide set which lies at the intersection of classification calibrated surrogates and those of Murata et al. (2004). This set coincides with those satisfying three common assumptions about surrogates. Equivalent expressions for the members-sometimes well known-follow for convex and concave surrogates, frequently used in the induction of linear separators and decision trees. Most notably, they share remarkable algorithmic features: for each of these two types of classifiers, we give a minimization algorithm provably converging to the minimum of any such surrogate. While seemingly different, we show that these algorithms are offshoots of the same "master" algorithm. This provides a new and broad unified account of different popular algorithms, including additive regression with the squared loss, the logistic loss, and the top-down induction performed in CART, C4.5. Moreover, we show that the induction enjoys the most popular boosting features, regardless of the surrogate. Experiments are provided on 40 readily available domains.

摘要

巴特利特等人(2006年)最近证明,代理的一个基本条件——分类校准,将其一致最小化与分类风险的一致最小化联系起来,并将关于其最小化的算法问题留作一个重要问题。在本文中,我们针对一个广泛的集合解决了这个问题,该集合位于分类校准代理与村田等人(2004年)的代理的交集处。这个集合与满足关于代理的三个常见假设的集合一致。对于在诱导线性分离器和决策树时经常使用的凸代理和凹代理,其成员的等效表达式——有时是众所周知的——随之而来。最值得注意的是,它们具有显著的算法特征:对于这两种类型的分类器中的每一种,我们都给出了一种最小化算法,可证明该算法收敛到任何此类代理的最小值。虽然看似不同,但我们表明这些算法是同一“主”算法的分支。这为不同的流行算法提供了一个新的、广泛的统一解释,包括具有平方损失的加法回归、逻辑损失以及在CART、C4.5中执行的自上而下归纳。此外,我们表明,无论代理如何,归纳都具有最流行的增强特征。我们在40个容易获得的领域上进行了实验。

相似文献

1
Bregman divergences and surrogates for learning.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2048-59. doi: 10.1109/TPAMI.2008.225.
2
SemiBoost: boosting for semi-supervised learning.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2000-14. doi: 10.1109/TPAMI.2008.235.
3
Statistical instance-based pruning in ensembles of independent classifiers.
IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):364-9. doi: 10.1109/TPAMI.2008.204.
4
Tailored aggregation for classification.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2098-105. doi: 10.1109/TPAMI.2009.55.
5
Joint learning of labels and distance metric.
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):973-8. doi: 10.1109/TSMCB.2009.2034632. Epub 2009 Dec 4.
6
On weighting clustering.
IEEE Trans Pattern Anal Mach Intell. 2006 Aug;28(8):1223-35. doi: 10.1109/TPAMI.2006.168.
7
An analysis of ensemble pruning techniques based on ordered aggregation.
IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):245-59. doi: 10.1109/TPAMI.2008.78.
8
Geometric decision tree.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):181-92. doi: 10.1109/TSMCB.2011.2163392. Epub 2011 Sep 1.
9
Fuzzy SLIQ decision tree algorithm.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1294-301. doi: 10.1109/TSMCB.2008.923529.
10
Optimal decision rule with class-selective rejection and performance constraints.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2073-82. doi: 10.1109/TPAMI.2008.239.

引用本文的文献

1
The phylogenetic tree of boosting has a bushy carriage but a single trunk.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8692-8693. doi: 10.1073/pnas.2001971117. Epub 2020 Apr 7.
2
Reply to Nock and Nielsen: On the work of Nock and Nielsen and its relationship to the additive tree.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8694-8695. doi: 10.1073/pnas.2002399117. Epub 2020 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验