Fauré Adrien, Naldi Aurélien, Lopez Fabrice, Chaouiya Claudine, Ciliberto Andrea, Thieffry Denis
Université de la Méditerranée & INSERM U928 - TAGC, Marseille, France.
Mol Biosyst. 2009 Dec;5(12):1787-96. doi: 10.1039/B910101m. Epub 2009 Jul 31.
Systems biologists are facing the difficult challenge of modelling and analysing regulatory networks encompassing numerous and diverse components and interactions. Furthermore, available data sets are often qualitative, which complicates the definition of truly quantitative models. In order to build comprehensive and predictive models, there is clearly a need for incremental strategies, enabling the progression from relatively small to large scale models. Leaning on former models, we have defined a logical model for three regulatory modules involved in the control of the mitotic cell cycle in budding yeast, namely the core cell cycle module, the morphogenetic checkpoint, and a module controlling the exit from mitosis. Consistency with available data has been assessed through a systematic analysis of model behaviours for various genetic backgrounds and other perturbations. Next, we take advantage of compositional facilities of the logical formalism to combine these three models in order to generate a single comprehensive model involving over thirty regulatory components. The resulting logical model preserves all relevant characteristics of the original modules, while enabling the simulation of more sophisticated experiments.
系统生物学家面临着对包含众多不同组件和相互作用的调控网络进行建模和分析的艰巨挑战。此外,可用数据集往往是定性的,这使得真正定量模型的定义变得复杂。为了构建全面且具有预测性的模型,显然需要采用增量策略,以便能够从相对较小规模的模型逐步发展到大规模模型。基于先前的模型,我们为参与芽殖酵母有丝分裂细胞周期调控的三个调控模块定义了一个逻辑模型,即核心细胞周期模块、形态发生检查点以及一个控制有丝分裂退出的模块。通过对各种遗传背景和其他扰动下模型行为的系统分析,评估了与现有数据的一致性。接下来,我们利用逻辑形式体系的组合工具将这三个模型结合起来,以生成一个涉及三十多个调控组件的单一综合模型。所得的逻辑模型保留了原始模块的所有相关特征,同时能够模拟更复杂的实验。