Richt Jüergen A, García-Sastre Adolfo
Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
Curr Top Microbiol Immunol. 2009;333:177-95. doi: 10.1007/978-3-540-92165-3_9.
The development of reverse genetics techniques allowing the rescue of influenza virus from plasmid DNA has opened up the possibility of inserting mutations into the genome of this virus for the generation of novel live attenuated influenza virus vaccines. Modifications introduced into the viral NS1 gene via reverse genetics have resulted in attenuated influenza viruses with promising vaccine potential. One of the main functions of the NS1 protein of influenza virus is the inhibition of the innate host type I interferon-mediated antiviral response. Upon viral infection, influenza viruses with modified NS1 genes induce a robust local type I interferon response that limits their replication, resulting in disease attenuation in different animal models. Nevertheless, these viruses can be grown to high titers in cell- and egg-based substrates with deficiencies in the type I IFN system. Intranasal inoculation of mice, pigs, horses, and macaques with NS1-modified influenza virus strains induced robust humoral and cellular immune responses, and generated immune protection against challenge with wild-type virus. This protective response was not limited to homologous strains of influenza viruses, as reduced replication of heterologous strains was also demonstrated in animals vaccinated with NS1-modified viruses, indicating the induction of a broad cross-neutralizing response by these vaccine candidates. The immunogenicity of NS1-modified viruses correlated with enhanced activation of antigen-presenting cells. While further studies on their safety and efficacy are still needed, the results obtained so far indicate that NS1-modified viruses could represent a new generation of improved influenza virus vaccines, and they suggest that modifying viral interferon antagonists in other virus families is a promising strategy for the generation of live attenuated virus vaccines.
反向遗传学技术的发展使得从质粒 DNA 拯救流感病毒成为可能,这为在该病毒基因组中插入突变以产生新型减毒活流感病毒疫苗开辟了道路。通过反向遗传学对病毒 NS1 基因进行修饰,已产生了具有良好疫苗潜力的减毒流感病毒。流感病毒 NS1 蛋白的主要功能之一是抑制宿主先天性 I 型干扰素介导的抗病毒反应。在病毒感染后,具有修饰 NS1 基因的流感病毒会诱导强烈的局部 I 型干扰素反应,从而限制其复制,在不同动物模型中导致疾病减轻。然而,这些病毒可以在基于细胞和鸡蛋的、I 型 IFN 系统存在缺陷的底物中生长到高滴度。用 NS1 修饰的流感病毒株对小鼠、猪、马和猕猴进行鼻内接种,可诱导强烈的体液和细胞免疫反应,并产生针对野生型病毒攻击的免疫保护。这种保护反应不仅限于流感病毒的同源株,因为在用 NS1 修饰的病毒接种的动物中,也证明了异源株的复制减少,这表明这些候选疫苗可诱导广泛的交叉中和反应。NS1 修饰病毒的免疫原性与抗原呈递细胞的激活增强相关。虽然仍需要对其安全性和有效性进行进一步研究,但迄今为止获得的结果表明,NS1 修饰的病毒可能代表新一代改良的流感病毒疫苗,并且它们表明在其他病毒家族中修饰病毒干扰素拮抗剂是产生减毒活病毒疫苗的一种有前途的策略。