Verbenko V N, Kuznetsova L V, Krup'ian E P, Suslov A V
Genetika. 2009 Aug;45(8):1048-54.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli DeltarecA cells, as compared to the wild-type recA+ cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recADelta21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the DeltarecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of gamma-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.
携带recA基因突变等位基因的质粒pUC19-recAoc在SOS修复系统和同源重组修复的控制中起关键作用,与野生型recA+细胞相比,它使大肠杆菌DeltarecA细胞的辐射抗性提高了1.5倍。在缺乏LexA蛋白且SOS调节子诱导缺陷的突变体lexA3 recADelta21中,该质粒的保护作用大幅降低。质粒pUC19-recAoc有效抑制了DeltarecA突变体的紫外线敏感性。突变recAo20允许RecA蛋白组成型高水平合成。该突变损害了recA基因操纵位点中的SOS框,并增强了二聚体LexA结合位点的异源性。这些数据证实,RecA蛋白的高水平合成本身不足以表达γ诱导功能,并且除recA基因外,lexA依赖性基因的去阻遏对于SOS修复系统的完全诱导是必要的。