Suppr超能文献

通过步长预测τ跳跃(SAL)算法进行精确的随机模拟。

Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm.

作者信息

Sehl Mary, Alekseyenko Alexander V, Lange Kenneth L

机构信息

Department of Biomathematics, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California 90095-1766, USA.

出版信息

J Comput Biol. 2009 Sep;16(9):1195-208. doi: 10.1089/cmb.2008.0249.

Abstract

Stochastic simulation methods are important in modeling chemical reactions, and biological and physical stochastic processes describable as continuous-time discrete-state Markov chains with a finite number of reactant species and reactions. The current algorithm of choice, tau-leaping, achieves fast and accurate stochastic simulation by taking large time steps that leap over individual reactions. During a leap interval (t, t + tau) in tau-leaping, each reaction channel operates as a Poisson process with a constant intensity. We modify tau-leaping to allow linear and quadratic changes in reaction intensities. Because our version of tau-leaping accurately anticipates how intensities change over time, we propose calling it the step anticipation tau-leaping (SAL) algorithm. We apply SAL to four examples: Kendall's process, a two-type branching process, Ehrenfest's model of diffusion, and Michaelis-Menten enzyme kinetics. In each case, SAL is more accurate than ordinary tau-leaping. The degree of improvement varies with the situation. Near stochastic equilibrium, reaction intensities are roughly constant, and SAL and ordinary tau-leaping perform about equally well.

摘要

随机模拟方法在化学反应建模以及可描述为具有有限数量反应物种类和反应的连续时间离散状态马尔可夫链的生物和物理随机过程中非常重要。当前首选的算法——τ跳跃,通过采取跨越单个反应的大时间步长来实现快速且准确的随机模拟。在τ跳跃的一个跳跃间隔(t,t + τ)内,每个反应通道都作为一个具有恒定强度的泊松过程运行。我们对τ跳跃进行修改,以允许反应强度呈线性和二次变化。由于我们版本的τ跳跃能够准确预测强度随时间的变化,我们建议将其称为步长预测τ跳跃(SAL)算法。我们将SAL应用于四个示例:肯德尔过程、两类型分支过程、埃伦费斯特扩散模型和米氏酶动力学。在每种情况下,SAL都比普通的τ跳跃更准确。改进程度因情况而异。在接近随机平衡时,反应强度大致恒定,SAL和普通的τ跳跃表现大致相同。

相似文献

1
Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm.
J Comput Biol. 2009 Sep;16(9):1195-208. doi: 10.1089/cmb.2008.0249.
2
Multinomial tau-leaping method for stochastic kinetic simulations.
J Chem Phys. 2007 Feb 28;126(8):084101. doi: 10.1063/1.2432326.
3
Asynchronous τ-leaping.
J Chem Phys. 2016 Mar 28;144(12):125104. doi: 10.1063/1.4944575.
4
Efficient step size selection for the tau-leaping simulation method.
J Chem Phys. 2006 Jan 28;124(4):044109. doi: 10.1063/1.2159468.
6
Michaelis-Menten speeds up tau-leaping under a wide range of conditions.
J Chem Phys. 2011 Apr 7;134(13):134112. doi: 10.1063/1.3576123.
7
A weak second order tau-leaping method for chemical kinetic systems.
J Chem Phys. 2011 Jul 14;135(2):024113. doi: 10.1063/1.3609119.
8
S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging [Formula: see text]-Leaping and R-Leaping.
Bull Math Biol. 2019 Aug;81(8):3074-3096. doi: 10.1007/s11538-018-0464-9. Epub 2018 Jul 10.
10
Highly accurate tau-leaping methods with random corrections.
J Chem Phys. 2009 Mar 28;130(12):124109. doi: 10.1063/1.3091269.

引用本文的文献

1
Stochastic simulation algorithms for Interacting Particle Systems.
PLoS One. 2021 Mar 2;16(3):e0247046. doi: 10.1371/journal.pone.0247046. eCollection 2021.
2
BioSimulator.jl: Stochastic simulation in Julia.
Comput Methods Programs Biomed. 2018 Dec;167:23-35. doi: 10.1016/j.cmpb.2018.09.009. Epub 2018 Oct 10.
3
Modeling of Cancer Stem Cell State Transitions Predicts Therapeutic Response.
PLoS One. 2015 Sep 23;10(9):e0135797. doi: 10.1371/journal.pone.0135797. eCollection 2015.
4
Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
Genetics. 2015 Feb;199(2):595-607. doi: 10.1534/genetics.114.172791. Epub 2014 Dec 19.
5
A stochastic simulator of birth-death master equations with application to phylodynamics.
Mol Biol Evol. 2013 Jun;30(6):1480-93. doi: 10.1093/molbev/mst057. Epub 2013 Mar 16.
6
Determining duration of HER2-targeted therapy using stem cell extinction models.
PLoS One. 2012;7(12):e46613. doi: 10.1371/journal.pone.0046613. Epub 2012 Dec 28.
7
Extinction models for cancer stem cell therapy.
Math Biosci. 2011 Dec;234(2):132-46. doi: 10.1016/j.mbs.2011.09.005. Epub 2011 Oct 6.
8
Differential destruction of stem cells: implications for targeted cancer stem cell therapy.
Cancer Res. 2009 Dec 15;69(24):9481-9. doi: 10.1158/0008-5472.CAN-09-2070.

本文引用的文献

1
Incorporating postleap checks in tau-leaping.
J Chem Phys. 2008 Feb 7;128(5):054103. doi: 10.1063/1.2819665.
3
Efficient step size selection for the tau-leaping simulation method.
J Chem Phys. 2006 Jan 28;124(4):044109. doi: 10.1063/1.2159468.
4
Avoiding negative populations in explicit Poisson tau-leaping.
J Chem Phys. 2005 Aug 1;123(5):054104. doi: 10.1063/1.1992473.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验