Suppr超能文献

S-跃迁:自适应加速随机模拟算法,连接[公式:见文本]-跃迁和 R-跃迁。

S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging [Formula: see text]-Leaping and R-Leaping.

机构信息

Department of Informatics, Technical University of Munich, 85748, Munich, Germany.

Computational Science and Engineering Laboratory, ETH Zurich, 8092, Zurich, Switzerland.

出版信息

Bull Math Biol. 2019 Aug;81(8):3074-3096. doi: 10.1007/s11538-018-0464-9. Epub 2018 Jul 10.

Abstract

We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the [Formula: see text]-leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the [Formula: see text]-leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the [Formula: see text]-leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the [Formula: see text]-leaping and R-leaping on a number of benchmark systems involving biological reaction networks.

摘要

我们提出了 S 跳跃算法,用于加速 Gillespie 的随机模拟算法,该算法结合了两种主要加速方法的优点:τ跳跃算法和 R 跳跃算法。这些算法在不同的条件下效率不同;τ跳跃算法在非刚性系统或部分平衡系统中效率较高,而 R 跳跃算法由于有效的采样过程,在刚性系统中表现更好。然而,系统设置的微小变化都可能对模拟系统的性质产生重大影响,从而降低加速算法的效率。所提出的算法结合了τ跳跃算法中有效的时间步长选择和 R 跳跃算法中的有效采样过程。结果表明,S 跳跃算法在不同条件下都能保持其效率,并且在大刚性系统或动态快速的系统中,S 跳跃算法优于这两种方法。我们通过对涉及生物反应网络的多个基准系统进行比较,展示了 S 跳跃算法在性能和准确性方面与τ跳跃算法和 R 跳跃算法的比较。

相似文献

7
Asynchronous τ-leaping.异步τ跳跃
J Chem Phys. 2016 Mar 28;144(12):125104. doi: 10.1063/1.4944575.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验