Leiden University Medical Center, Leiden, The Netherlands.
Eur J Cancer. 2009 Sep;45 Suppl 1:391-3. doi: 10.1016/S0959-8049(09)70061-9.
Whole body optical imaging using bioluminescence or fluorescence is one of the most rapidly emerging technologies to non-invasively follow all kinds of molecular and cellular processes in small animals. Using tomographic approaches it is now also possible to get better quantitative data. Due to its sensitivity and simplicity it is now also widely used in drug development and drug screening. Finally, using near infrared fluorescent probes that have much deeper penetration also opens up new exciting applications such as intra-operative image guided surgery for sentinel lymph node mapping and radical resection of tumours. Recent advances in imaging strategies that reveal cellular and molecular biological events in real-time facilitate our understanding of biological processes occurring in living animals. The development of molecular tags, such as green fluorescent protein (GFP) from the jellyfish Aequorea victoria, red fluorescent proteins (RFP) from the Discosoma species (dsRed2) and luciferase (Luc) from the firefly Photinus pyralis (fLuc) and the sea pansy Renilla (rLuc), has revolutionised research over the past decade, allowing complex biochemical processes to be associated with the functioning of proteins in living cells. Optical technologies, both microscopic and macroscopic, are developing fast. Recent technical advances for imaging weak visible light sources using cooled charged coupled device (CCCD) cameras, peltier cooled detectors and micro-plate channel intensifiers allow detection of photon emission from inside the tissues of small animals. Whole body fluorescent imaging (FLI) and bioluminescent imaging (BLI) are now applied to study cell- and tissue-specific gene promoter activity and also to follow trafficking, differentiation and fate of i.e. GFP or RFP and/or luciferase expressing cells, or biological processes like apoptosis, protein-protein interaction, angiogenesis, proteolysis and gene-transfer. Optical imaging (OI) and optical reporter systems are also very cost-effective and time-efficient and they are particularly well suited for small animal imaging and for in vitro assays to validate different reporter systems.
利用生物发光或荧光进行全身光学成像是一种最快速发展的技术,可用于非侵入性地跟踪小动物体内的各种分子和细胞过程。通过层析方法,现在也可以获得更好的定量数据。由于其灵敏度和简单性,它现在也被广泛用于药物开发和药物筛选。最后,使用具有更深穿透能力的近红外荧光探针也为术中图像引导手术中的前哨淋巴结测绘和肿瘤的根治性切除等新的令人兴奋的应用开辟了道路。实时揭示细胞和分子生物学事件的成像策略的最新进展有助于我们理解活体动物中发生的生物学过程。分子标签的发展,如来自水母 Aequorea victoria 的绿色荧光蛋白 (GFP)、来自 Discosoma 物种 (dsRed2) 的红色荧光蛋白 (RFP) 和来自萤火虫 Photinus pyralis (fLuc) 的荧光素酶 (Luc) 和海蝴蝶 Renilla (rLuc),彻底改变了过去十年的研究,使复杂的生化过程能够与活细胞中蛋白质的功能相关联。光学技术,无论是微观还是宏观,都在快速发展。最近的技术进步,使用冷却的电荷耦合器件 (CCD) 相机、珀耳帖冷却探测器和微板通道增强器来成像弱可见光光源,允许从小动物组织内部检测到光子发射。全身荧光成像 (FLI) 和生物发光成像 (BLI) 现在用于研究细胞和组织特异性基因启动子活性,并跟踪 GFP 或 RFP 和/或荧光素酶表达细胞的迁移、分化和命运,或生物过程,如细胞凋亡、蛋白质-蛋白质相互作用、血管生成、蛋白水解和基因转移。光学成像 (OI) 和光学报告系统也非常具有成本效益和时间效益,特别适合小动物成像和体外测定来验证不同的报告系统。