Suppr超能文献

芳香族氨基酸的两亲性月桂酸酯衍生物:化学结构在水聚集性质中的意义。

Amphiphilic lauryl ester derivatives from aromatic amino acids: significance of chemical architecture in aqueous aggregation properties.

机构信息

Industrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600020, India.

出版信息

J Phys Chem B. 2009 Oct 22;113(42):13959-70. doi: 10.1021/jp905384y.

Abstract

Lauryl esters of L-tyrosine (LET) and L-phenylalanine (LEP) were, in a previous interface adsorption study, found to adopt very different interfacial conformations. The present study is an investigation of their aqueous aggregation properties with the goal of elucidating the effects of the presence in LET and absence in LEP of the phenolic OH group on their aqueous aggregate structures and micellar conformations of the surfactant monomers. The measured properties included aggregation numbers from time-resolved fluorescence quenching (TRFQ), interface hydration index and microviscosity by electron spin resonance (ESR), chemical shifts of (1)H resonance lines by NMR, and Krafft temperatures and enthalpies of structural transitions by differential scanning calorimetry (DSC). The TRFQ, ESR, and NMR experiments were conducted at various temperatures from 23 to 70 degrees C for various surfactant concentrations from 0.050 to 0.200 M. Markedly different temperature dependences of aggregation number and (1)H NMR chemical shifts are exhibited by LET and LEP micelles. LET and LEP form ionic micelles. The aggregation number of LEP decreases as is characteristic of ionic micelles, but that of LET increases slightly with temperature. The changes with temperature in the NMR chemical shifts and width of the resonance lines are significantly greater for the various LEP protons than for those of LET. The differences in these properties and other fluorescence decay characteristics of fluorophores incorporated into the micelles could be attributed to the difference in the micellar conformations of LET and LEP which are postulated to be similar to that at oil-water interfaces. The phenolic group is hypothesized to be in the micelle-water interface as part of the headgroup in LET micelles, and its location does not change with temperature. On the other hand, in LEP micelles, the phenyl ring is folded into the core overlapping with the flexible hydrophobic chains. The resulting closer proximity between the phenyl ring and the flexible hydrocarbon chain causes interdependence of the phenyl ring and chain proton resonances, leading to the observed temperature dependence of the chemical shifts in LEP. The TRFQ and ESR data are combined together in a molecular space-filling model, referred to as the polar shell model, to derive the geometrical properties of the micelle. The DSC scans in the temperature range 10-55 degrees C showed the presence of distinctly different endotherms for LET and LEP. The Krafft temperatures, K(T), and the enthalpies were determined. The higher K(T) and broader peak of the DSC endotherm of LET as compared to LEP are attributed to the stabilization of fiberlike structures below the Krafft temperature due to its chirality and the hydrogen bonding capability of the phenolic OH and also to the ion-dipole interactions. Thus, all of the observed differences between LET and LEP could be attributed to the difference in their chemical architecture.

摘要

之前的界面吸附研究发现,L-酪氨酸(LET)和 L-苯丙氨酸(LEP)的月桂酸酯在界面上呈现出非常不同的构象。本研究旨在探讨它们在水溶液中的聚集性质,目的是阐明 LET 中存在酚羟基而 LEP 中不存在酚羟基对它们在水溶液中的聚集结构和胶束单体的胶束构象的影响。所测量的性质包括时间分辨荧光猝灭(TRFQ)、电子自旋共振(ESR)测定的界面水合指数和微粘度、核磁共振(NMR)测定的(1)H 共振线的化学位移,以及差示扫描量热法(DSC)测定的克拉夫特温度和结构转变焓。TRFQ、ESR 和 NMR 实验在 23 至 70°C 的不同温度下,在 0.050 至 0.200 M 的各种表面活性剂浓度下进行。LET 和 LEP 胶束表现出明显不同的聚集数和(1)H NMR 化学位移的温度依赖性。LET 和 LEP 形成离子胶束。LEP 的聚集数随着离子胶束的特征而降低,但 LET 的聚集数随着温度的升高而略有增加。与 LET 相比,LEP 各种质子的 NMR 化学位移和共振线宽度随温度的变化要大得多。这些性质的差异以及荧光团掺入胶束后的荧光衰减特性的差异,可能归因于 LET 和 LEP 胶束构象的差异,这两种胶束构象被假定类似于油水界面上的构象。假定酚基位于胶束-水界面上,作为 LET 胶束的头基的一部分,并且其位置不随温度变化。另一方面,在 LEP 胶束中,苯环折叠到核心中,与柔性疏水链重叠。由于柔性烃链的这种接近,导致苯环和链质子共振的相互依赖性,导致 LEP 中观察到的化学位移的温度依赖性。TRFQ 和 ESR 数据结合在一个分子空间填充模型中,称为极性壳模型,以推导出胶束的几何性质。在 10-55°C 的温度范围内,DSC 扫描显示 LET 和 LEP 都存在明显不同的吸热峰。确定了克拉夫特温度 K(T)和焓。与 LEP 相比,LET 的更高的 K(T)和更宽的 DSC 吸热峰归因于其手性和酚羟基的氢键能力以及离子偶极相互作用,使得纤维状结构在克拉夫特温度以下稳定。因此,LET 和 LEP 之间的所有观察到的差异都可以归因于它们化学结构的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验