The Howard P. Isermann Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
J Chem Phys. 2009 Sep 21;131(11):115102. doi: 10.1063/1.3227031.
We focus on the hydration of a methane and spherical single and multisite C60 and C180 solutes over a range of solute-water attractions to quantify the vicinal water structure and their hydration thermodynamics using extensive molecular dynamics simulations and theory. We show that water structure near larger solutes is more sensitive to solute-water attractions compared to that near smaller ones. To understand the sensitivity, we separate the solute-water potential of mean force into a direct solute-water interaction and an indirect or solvent contribution [omega(r)]. In the absence of omega(r), water density in the solute vicinity would increase exponentially with solute-water interactions. Instead, omega(r) becomes increasingly repulsive with strengthening of solute-water attractions thereby opposing those direct interactions. We term this phenomenon "competitive expulsion," which characterizes the repulsion of a test water molecule by the hydration shell solvent waters. We develop a physically motivated theoretical approach to predict changes in omega(r) with attractions. We call this approach the modified-EXP (M-EXP) approximation owing to the similarity of ideas and especially our final expression with that of the EXP approximation of Chandler and Andersen [J. Chem. Phys. 57, 1930 (1972)]. Solute-water radial distribution functions and chemical potentials calculated using the M-EXP approach are in good agreement with simulation data. These calculations highlight the sensitivity of hydration structure and thermodynamics of bucky ball like solutes to solute-water interactions. We find that excess chemical potentials of bucky balls with standard alkane-like carbon-water interactions parameters are negative, suggesting the need for a careful calibration of those parameters for predictions of solubility, wetting, and water-mediated interactions using molecular simulations.
我们专注于甲烷和球形单分子及多分子 C60 和 C180 溶质在一系列溶质-水吸引力范围内的水合作用,使用广泛的分子动力学模拟和理论来量化近邻水结构及其水合热力学。我们表明,与较小的溶质相比,较大溶质附近的水结构对溶质-水吸引力更为敏感。为了理解这种敏感性,我们将溶质-水平均力势能分解为直接的溶质-水相互作用和间接的或溶剂贡献[ω(r)]。在没有[ω(r)]的情况下,溶质附近的水密度将随溶质-水相互作用呈指数增加。相反,随着溶质-水吸引力的增强,[ω(r)]变得越来越具有排斥性,从而与这些直接相互作用相抗衡。我们将这种现象称为“竞争排斥”,它描述了水化壳溶剂水对测试水分子的排斥。我们提出了一种物理上合理的理论方法来预测[ω(r)]随吸引力的变化。我们将这种方法称为改进 EXP(M-EXP)近似,因为其思想相似,特别是我们的最终表达式与 Chandler 和 Andersen 的 EXP 近似[J. Chem. Phys. 57, 1930(1972)]相似。使用 M-EXP 方法计算的溶质-水径向分布函数和化学势与模拟数据吻合良好。这些计算突出了类似巴基球的溶质的水合结构和热力学对溶质-水相互作用的敏感性。我们发现,具有标准烷烃样碳-水相互作用参数的巴基球的过量化学势为负,这表明需要仔细校准这些参数,以用于使用分子模拟预测溶解度、润湿和水介导的相互作用。