Suppr超能文献

上皮管的形态发生:对管形成、伸长和细化的深入了解。

Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration.

机构信息

Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

出版信息

Dev Biol. 2010 May 1;341(1):34-55. doi: 10.1016/j.ydbio.2009.09.024. Epub 2009 Sep 22.

Abstract

Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.

摘要

上皮管是后生动物门中的基本组织,为许多主要器官的重要功能组件提供了基本结构。近年来,在果蝇和哺乳动物中的研究工作已经开始阐明在发育过程中驱动上皮管形成、伸长和分支形态发生的细胞机制。正向和反向遗传技术都已开始鉴定这些过程的关键分子调节剂,并揭示了关键途径在调节管状网络的生长和精细化中的保守作用。在这篇综述中,我们讨论了驱动分支上皮网络形成的发育程序,特别强调了果蝇的气管和唾液腺以及哺乳动物的肺、乳腺、肾脏和唾液腺。我们既强调了这些器官发育的相似性,又试图确定组织和生物体特有的策略。最后,我们简要考虑了在分支形态发生过程中对增殖、顶底极性和上皮运动的调控的理解如何能够应用于理解转移性癌症进展过程中这些相同过程的病理性失调。

相似文献

1
Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration.
Dev Biol. 2010 May 1;341(1):34-55. doi: 10.1016/j.ydbio.2009.09.024. Epub 2009 Sep 22.
2
Branching morphogenesis: from cells to organs and back.
Cold Spring Harb Perspect Biol. 2012 Oct 1;4(10):a008243. doi: 10.1101/cshperspect.a008243.
3
Cellular and physical mechanisms of branching morphogenesis.
Development. 2014 Jul;141(14):2750-9. doi: 10.1242/dev.104794.
4
Cellular foundations of mammary tubulogenesis.
Semin Cell Dev Biol. 2014 Jul;31:124-31. doi: 10.1016/j.semcdb.2014.04.019. Epub 2014 Apr 18.
5
From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis.
Differentiation. 2006 Sep;74(7):326-48. doi: 10.1111/j.1432-0436.2006.00095.x.
6
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs.
Curr Top Dev Biol. 2021;143:37-74. doi: 10.1016/bs.ctdb.2020.09.002. Epub 2020 Oct 20.
7
Cellular mechanisms regulating epithelial morphogenesis and cancer invasion.
Curr Opin Cell Biol. 2010 Oct;22(5):640-50. doi: 10.1016/j.ceb.2010.08.019. Epub 2010 Sep 9.
8
Novel mechanisms of tube-size regulation revealed by the Drosophila trachea.
Cell Tissue Res. 2013 Nov;354(2):343-54. doi: 10.1007/s00441-013-1673-z. Epub 2013 Jul 4.
9
How to build an epithelial tree.
Phys Biol. 2022 Nov 22;19(6). doi: 10.1088/1478-3975/ac9e38.
10
Making tubes in the Drosophila embryo.
Dev Dyn. 2005 Mar;232(3):617-32. doi: 10.1002/dvdy.20293.

引用本文的文献

1
: How and Why It Became a Model Organism.
Int J Mol Sci. 2025 Aug 2;26(15):7485. doi: 10.3390/ijms26157485.
2
Arc controls organ architecture through modulation of Crb and MyoII.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202409078. Epub 2025 Jun 12.
3
The dynamics of tubulogenesis in development and disease.
Development. 2025 Feb 1;152(3). doi: 10.1242/dev.202820. Epub 2025 Feb 17.
4
4D pathology: translating dynamic epithelial tubulogenesis to prostate cancer pathology.
Histopathology. 2025 Apr;86(5):681-693. doi: 10.1111/his.15354. Epub 2024 Oct 20.
5
The tracheal terminal cell as a model for branching morphogenesis.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2404462121. doi: 10.1073/pnas.2404462121. Epub 2024 Oct 2.
6
Different Biomechanical Cell Behaviors in an Epithelium Drive Collective Epithelial Cell Extrusion.
Adv Sci (Weinh). 2024 Nov;11(42):e2401573. doi: 10.1002/advs.202401573. Epub 2024 Sep 18.
7
The Enigmas of Tissue Closure: Inspiration from .
Curr Issues Mol Biol. 2024 Aug 9;46(8):8710-8725. doi: 10.3390/cimb46080514.
8
The ion channel Anoctamin 10/TMEM16K coordinates organ morphogenesis across scales in the urochordate notochord.
PLoS Biol. 2024 Aug 22;22(8):e3002762. doi: 10.1371/journal.pbio.3002762. eCollection 2024 Aug.
9
The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during C. elegans gonad organogenesis.
Curr Biol. 2024 Jun 3;34(11):2387-2402.e5. doi: 10.1016/j.cub.2024.04.073. Epub 2024 May 21.
10
Plasticity in cell migration modes across development, physiology, and disease.
Front Cell Dev Biol. 2024 Apr 23;12:1363361. doi: 10.3389/fcell.2024.1363361. eCollection 2024.

本文引用的文献

1
Apical constriction: a cell shape change that can drive morphogenesis.
Dev Biol. 2010 May 1;341(1):5-19. doi: 10.1016/j.ydbio.2009.09.009. Epub 2009 Sep 12.
2
Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis.
Dev Cell. 2009 Aug;17(2):199-209. doi: 10.1016/j.devcel.2009.07.013.
3
Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis.
Nat Genet. 2009 Jul;41(7):793-9. doi: 10.1038/ng.400. Epub 2009 Jun 21.
4
Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient.
HFSP J. 2008 Aug;2(4):220-37. doi: 10.2976/1.2955565. Epub 2008 Jul 23.
7
Metastasis: from dissemination to organ-specific colonization.
Nat Rev Cancer. 2009 Apr;9(4):274-84. doi: 10.1038/nrc2622.
8
Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium.
PLoS Genet. 2009 Mar;5(3):e1000427. doi: 10.1371/journal.pgen.1000427. Epub 2009 Mar 20.
9
Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis.
Mol Biol Cell. 2009 May;20(9):2486-94. doi: 10.1091/mbc.e08-02-0177. Epub 2009 Mar 18.
10
Collective cell migration drives morphogenesis of the kidney nephron.
PLoS Biol. 2009 Jan 6;7(1):e9. doi: 10.1371/journal.pbio.1000009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验