Division of Radiological Physics, Department of Medical Radiology, University of Basel Hospital, Basel, Switzerland.
Magn Reson Med. 2009 Nov;62(5):1232-41. doi: 10.1002/mrm.22116.
The theoretical description of steady state free precession (SSFP) sequences is generally well accepted and unquestioned, although it is based on instantaneously acting radiofrequency (RF) pulses. In practice, however, all excitation processes are finite, thereby questioning the overall validity of the common SSFP signal description for use with finite RF pulses. In this paper, finite RF pulse effects on balanced SSFP signal formation are analyzed as a function of the RF time, the pulse repetition time, the flip angle (alpha) and relaxation times (T(1,2)). The observed signal modulations from finite RF pulses (compared to infinitesimal ones) can range from only a few percent (for RF time/pulse repetition time << 1, alpha << 90 degrees, T(2)/T(1) approximately 1) to over 10% (for RF time/pulse repetition time << 1, alpha approximately 90 degrees, T(2)/T(1) << 1) and may even exceed 100% in the limit of RF time/pulse repetition time --> 1 (for alpha approximately 90 degrees, T(2)/T(1) << 1). As a result, a revision of SSFP signal theory is indicated not only for reasons of completeness but also seems advisable, e.g., for all quantitative SSFP methods. A simple modification for the common balanced SSFP equation is derived that provides an accurate framework for SSFP signal description over a wide variety of practical and physiologic parameters.
稳态自由进动(SSFP)序列的理论描述通常被广泛接受和认可,尽管它是基于瞬间作用的射频(RF)脉冲。然而,在实践中,所有的激发过程都是有限的,这就对常用的 SSFP 信号描述在使用有限 RF 脉冲时的整体有效性提出了质疑。在本文中,分析了有限 RF 脉冲对平衡 SSFP 信号形成的影响,作为 RF 时间、脉冲重复时间、翻转角(alpha)和弛豫时间(T(1,2))的函数。与无穷小 RF 脉冲相比,有限 RF 脉冲(与无穷小 RF 脉冲相比)引起的信号调制幅度可从仅几个百分点(对于 RF 时间/脉冲重复时间 << 1、alpha << 90 度、T(2)/T(1)大约 1)到超过 10%(对于 RF 时间/脉冲重复时间 << 1、alpha 大约 90 度、T(2)/T(1) << 1),甚至在 RF 时间/脉冲重复时间->1(对于 alpha 大约 90 度、T(2)/T(1) << 1)的极限下,超过 100%。因此,不仅为了完整性,而且似乎也有必要对 SSFP 信号理论进行修正,例如,对于所有定量的 SSFP 方法。推导了一个常见的平衡 SSFP 方程的简单修正,该修正为广泛的实际和生理参数下的 SSFP 信号描述提供了一个准确的框架。