Suppr超能文献

应用 LCModel 和 AMARES 评估骨骼肌中的脂质。

Assessment of lipids in skeletal muscle by LCModel and AMARES.

机构信息

Department of Radiology, Uppsala University Hospital, Uppsala, Sweden.

出版信息

J Magn Reson Imaging. 2009 Nov;30(5):1124-9. doi: 10.1002/jmri.21900.

Abstract

PURPOSE

To process single voxel spectra of the human skeletal muscle by using an advanced method for accurate, robust, and efficient spectral fitting (AMARES) and by linear combination of model spectra (LCModel). To determine absolute concentrations of extra- (EMCL) and intramyocellular lipids (IMCL).

MATERIALS AND METHODS

Single-voxel proton magnetic resonance spectroscopy (PRESS) was used to obtain the spectra of the calf muscles. Unsuppressed water line was used as a concentration reference. A new prior knowledge for AMARES was proposed to estimate the concentrations of EMCL and IMCL. The prior knowledge was derived from the spectrum of vegetable oil. The results were compared with the values estimated by LCModel. Absolute concentrations of total lipid content in millimoles per kilogram wet weight were used for the comparisons.

RESULTS

Absolute concentrations of total lipid content in skeletal muscle were estimated by AMARES and LCModel. Very good correlation of the total fat (EMCL + IMCL) and IMCL concentrations was achieved between both data processing approaches.

CONCLUSION

Assessment the absolute concentrations of muscular lipids by AMARES and LCModel can be performed with comparable accuracy.

摘要

目的

通过使用一种先进的方法(AMARES)对人体骨骼肌的单体素光谱进行精确、稳健和高效的拟合,并通过模型光谱的线性组合(LCModel)来处理单体素光谱。以确定细胞外(EMCL)和细胞内肌脂(IMCL)的绝对浓度。

材料和方法

使用单体素质子磁共振波谱(PRESS)来获取小腿肌肉的光谱。未抑制的水线用作浓度参考。提出了一种新的 AMARES 先验知识,用于估计 EMCL 和 IMCL 的浓度。该先验知识来自植物油的光谱。结果与 LCModel 估计的值进行了比较。比较使用每千克湿重毫摩尔表示的总脂质含量的绝对浓度。

结果

通过 AMARES 和 LCModel 估计了骨骼肌中的总脂质含量的绝对浓度。两种数据处理方法都能很好地估计总脂肪(EMCL+IMCL)和 IMCL 浓度。

结论

通过 AMARES 和 LCModel 评估肌肉脂质的绝对浓度可以达到相当的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验