Ribeiro Euripedes de Almeida, Leyrat Cédric, Gérard Francine C A, Albertini Aurélie A V, Falk Caroline, Ruigrok Rob W H, Jamin Marc
Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, Grenoble Cedex 9, France.
J Mol Biol. 2009 Dec 4;394(3):558-75. doi: 10.1016/j.jmb.2009.09.042. Epub 2009 Sep 23.
In rabies virus, the attachment of the L polymerase (L) to the viral nucleocapsids (NCs)-a nucleoprotein (N)-RNA complex that serves as template for RNA transcription and replication-is mediated by the polymerase cofactor, the phosphoprotein (P). P forms dimers (P(2)) that bind through their C-terminal domains (P(CTD)) to the C-terminal region of the N. Recombinant circular N(m)-RNA complexes containing 9 to 12 protomers of N (hereafter, the subscript m denotes the number of N protomers) served here as model systems for studying the binding of P to NC-like N(m)-RNA complexes. Titration experiments show that there are only two equivalent and independent binding sites for P dimers on the N(m)-RNA rings and that each P dimer binds through a single P(CTD). A dissociation constant in the nanomolar range (160+/-20 nM) was measured by surface plasmon resonance, indicating a strong interaction between the two partners. Small-angle X-ray scattering (SAXS) data and small-angle neutron scattering data showed that binding of two P(CTD) had almost no effect on the size and shape of the N(m)-RNA rings, whereas binding of two P(2) significantly increased the size of the complexes. SAXS data and molecular modeling were used to add flexible loops (N(NTD) loop, amino acids 105-118; N(CTD) loop, amino acids 376-397) missing in the recently solved crystal structure of the circular N(11)-RNA complex and to build a model for the N(10)-RNA complex. Structural models for the N(m)-RNA-(P(CTD))(2) complexes were then built by docking the known P(CTD) structure onto the completed structures of the circular N(10)-RNA and N(11)-RNA complexes. A multiple-stage flexible docking procedure was used to generate decoys, and SAXS and biochemical data were used for filtering the models. In the refined model, the P(CTD) is bound to the C-terminal top of one N protomer (N(i)), with the C-terminal helix (alpha(6)) of P(CTD) lying on helix alpha(14) of N(i). By an induced-fit mechanism, the N(CTD) loop of the same protomer (N(i)) and that of the adjacent one (N(i)(-1)) mold around the P(CTD), making extensive protein-protein contacts that could explain the strong affinity of P for its template. The structural model is in agreement with available biochemical data and provides new insights on the mechanism of attachment of the polymerase complex to the NC template.
在狂犬病病毒中,L聚合酶(L)与病毒核衣壳(NCs)的结合——一种作为RNA转录和复制模板的核蛋白(N)-RNA复合物——是由聚合酶辅因子磷蛋白(P)介导的。P形成二聚体(P(2)),其通过C末端结构域(P(CTD))与N的C末端区域结合。含有9至12个N原体(此后,下标m表示N原体的数量)的重组环状N(m)-RNA复合物在此用作研究P与类NC的N(m)-RNA复合物结合的模型系统。滴定实验表明,在N(m)-RNA环上P二聚体只有两个等效且独立的结合位点,并且每个P二聚体通过单个P(CTD)结合。通过表面等离子体共振测量得到纳摩尔范围内的解离常数(160±20 nM),表明两个结合伙伴之间有强烈的相互作用。小角X射线散射(SAXS)数据和小角中子散射数据表明,两个P(CTD)的结合对N(m)-RNA环的大小和形状几乎没有影响,而两个P(2)的结合显著增加了复合物的大小。SAXS数据和分子建模被用于添加在最近解析的环状N(11)-RNA复合物晶体结构中缺失的柔性环(N(NTD)环,氨基酸105 - 118;N(CTD)环,氨基酸376 - 397),并构建N(10)-RNA复合物的模型。然后通过将已知的P(CTD)结构对接至环状N(10)-RNA和N(11)-RNA复合物的完整结构上,构建N(m)-RNA-(P(CTD))(2)复合物的结构模型。使用多阶段柔性对接程序生成诱饵,并使用SAXS和生化数据对模型进行筛选。在优化后的模型中,P(CTD)与一个N原体(N(i))的C末端顶部结合,P(CTD)的C末端螺旋(α(6))位于N(i)的α(14)螺旋上。通过诱导契合机制,同一原体(N(i))和相邻原体(N(i)(-1))的N(CTD)环围绕P(CTD)形成模体,产生广泛的蛋白质 - 蛋白质接触,这可以解释P对其模板的强亲和力。该结构模型与现有的生化数据一致,并为聚合酶复合物与NC模板的结合机制提供了新的见解。