University of California, San Francisco, Department of Physiology, San Francisco, CA 94158-2324, USA.
Curr Opin Neurobiol. 2009 Oct;19(5):553-60. doi: 10.1016/j.conb.2009.08.001. Epub 2009 Sep 24.
Methods to label neurons and to monitor their activity with genetically encoded fluorescent reporters have been a staple of neuroscience research for several years. The recent introduction of photoswitchable ion channels and pumps, such as channelrhodopsin (ChR2), halorhodopsin (NpHR), and light-gated glutamate receptor (LiGluR), is enabling remote optical manipulation of neuronal activity. The translucent brains of zebrafish offer superior experimental conditions for optogenetic approaches in vivo. Enhancer and gene trapping approaches have generated hundreds of Gal4 driver lines in which the expression of UAS-linked effectors can be targeted to subpopulations of neurons. Local photoactivation of genetically targeted LiGluR, ChR2, or NpHR has uncovered novel functions for specific areas and cell types in zebrafish behavior. Because the manipulation is restricted to times and places where genetics (cell types) and optics (beams of light) intersect, this method affords excellent resolving power for the functional analysis of neural circuitry.
几年来,标记神经元并使用基因编码荧光报告基因监测其活性的方法一直是神经科学研究的基础。最近引入的光可切换离子通道和泵,如通道视紫红质(ChR2)、卤化视紫红质(NpHR)和光门控谷氨酸受体(LiGluR),正在实现神经元活动的远程光学操纵。斑马鱼半透明的大脑为体内光遗传学方法提供了优越的实验条件。增强子和基因捕获方法已经产生了数百种 Gal4 驱动线,其中 UAS 连接的效应器的表达可以靶向神经元的亚群。对基因靶向的 LiGluR、ChR2 或 NpHR 的局部光激活揭示了特定区域和细胞类型在斑马鱼行为中的新功能。由于操纵仅限于遗传学(细胞类型)和光学(光束)交叉的时间和地点,因此该方法为神经回路的功能分析提供了出色的分辨率。