Suppr超能文献

Competitive inhibition of magnesium-induced [3H]N-(1-[thienyl] cyclohexyl)piperidine binding by arcaine: evidence for a shared spermidine-magnesium binding site.

作者信息

Sacaan A I, Johnson K M

机构信息

Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77550.

出版信息

Mol Pharmacol. 1990 Nov;38(5):705-10.

PMID:1978243
Abstract

The polyamine competitive antagonist arcaine (1,4-diguanidino-butane) produced complete inhibition of basal [3H]N-(1-[thienyl] cyclohexyl)piperidine ([3H]TCP) binding, with an IC50 value of 4.52 +/- 0.93 microM. Arcaine (5 and 10 microM) produced a decrease in the affinity without a significant change in the receptor density of [3H]TCP binding under equilibrium conditions. In addition, arcaine did not alter either N-methyl-D-aspartate-specific [3H] glutamate or strychnine-insensitive [3H]glycine binding. Furthermore, increasing concentrations of arcaine produced parallel rightward shifts in the concentration-response curves for both spermidine- and magnesium-induced [3H]TCP binding, suggesting that arcaine is a competitive inhibitor of both agonists. Similar rightward shifts were observed for barium- and strontium-induced [3H]TCP binding. In contrast, arcaine decreased the efficacy of glutamate- and glycine-induced [3H]TCP binding without changing their EC50 values, indicating a noncompetitive type of inhibition. These results imply that spermidine and certain divalent cations including magnesium share the same mechanism for enhancing [3H]TCP binding, whereas glutamate and glycine have different sites of action. This is further supported by the additive effect of spermidine when tested in the presence of maximal concentrations of glutamate and glycine. On the other hand, spermidine and magnesium were not additive and, in fact, magnesium was able to block the effects of spermidine under certain conditions. The possibility that magnesium is a partial agonist at the polyamine site is discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验