Suppr超能文献

新认知机和图谱变换级联。

Neocognitron and the Map Transformation Cascade.

机构信息

Department of Informatics, IST - Technical University of Lisboa, Portugal.

出版信息

Neural Netw. 2010 Jan;23(1):74-88. doi: 10.1016/j.neunet.2009.09.004. Epub 2009 Sep 17.

Abstract

Based on our observations of the working principles of the archetypal hierarchical neural network, Neocognitron, we propose a simplified model which we call the Map Transformation Cascade. The least complex Map Transformation Cascade can be understood as a sequence of filters, which maps and transforms the input pattern into a space where patterns in the same class are close. The output of the filters is then passed to a simple classifier, which yields a classification for the input pattern. Instead of a specifically crafted learning algorithm, the Map Transformation Cascade separates two different learning needs: Information reduction, where a clustering algorithm is more suitable (e.g., K-Means) and classification, where a supervised classifier is more suitable (e.g., nearest neighbor method). The performance of the proposed model is analyzed in handwriting recognition. The Map Transformation Cascade achieved performance similar to that of Neocognitron.

摘要

基于对典型分层神经网络(Neocognitron)工作原理的观察,我们提出了一个简化模型,称为映射变换级联。最简单的映射变换级联可以理解为一系列滤波器,它将输入模式映射并转换到一个类内模式接近的空间。然后,滤波器的输出传递给一个简单的分类器,为输入模式产生一个分类。映射变换级联没有使用特定的学习算法,而是将两种不同的学习需求分开:信息减少,此时聚类算法更适用(例如 K-Means),分类,此时有监督分类器更适用(例如最近邻方法)。所提出模型的性能在手写识别中进行了分析。映射变换级联的性能与 Neocognitron 相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验