Suppr超能文献

使用多阶段最优成分分析学习用于对象分类的表示。

Learning representations for object classification using multi-stage optimal component analysis.

作者信息

Wu Yiming, Liu Xiuwen, Mio Washington

机构信息

Department of Computer Science, Florida State University, Tallahassee, FL 32306, USA.

出版信息

Neural Netw. 2008 Mar-Apr;21(2-3):214-21. doi: 10.1016/j.neunet.2007.12.023. Epub 2007 Dec 28.

Abstract

Learning data representations is a fundamental challenge in modeling neural processes and plays an important role in applications such as object recognition. Optimal component analysis (OCA) formulates the problem in the framework of optimization on a Grassmann manifold and a stochastic gradient method is used to estimate the optimal basis. OCA has been successfully applied to image classification problems arising in a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires expensive computational cost. In multi-stage OCA, we first hierarchically project the data onto several low-dimensional subspaces using standard techniques, then OCA learning is performed hierarchically from the lowest to the highest levels to learn about a subspace that is optimal for data discrimination based on the K-nearest neighbor classifier. One of the main advantages of multi-stage OCA lies in the fact that it greatly improves the computational efficiency of the OCA learning algorithm without sacrificing the recognition performance, thus enhancing its applicability to practical problems. In addition to the nearest neighbor classifier, we illustrate the effectiveness of the learned representations on object classification used in conjunction with classifiers such as neural networks and support vector machines.

摘要

学习数据表示是对神经过程进行建模的一项基本挑战,并且在诸如目标识别等应用中发挥着重要作用。最优成分分析(OCA)在格拉斯曼流形上的优化框架中阐述了该问题,并使用随机梯度方法来估计最优基。OCA已成功应用于各种背景下出现的图像分类问题。然而,由于搜索空间通常是高维的,OCA优化通常需要高昂的计算成本。在多阶段OCA中,我们首先使用标准技术将数据分层投影到几个低维子空间上,然后从最低层到最高层分层执行OCA学习,以学习基于K近邻分类器对数据辨别最优的子空间。多阶段OCA的主要优点之一在于,它在不牺牲识别性能的情况下极大地提高了OCA学习算法的计算效率,从而增强了其对实际问题的适用性。除了最近邻分类器之外,我们还说明了结合神经网络和支持向量机等分类器使用时,所学习的表示在目标分类上的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验