Suppr超能文献

prenylation 缺陷的 G 蛋白 γ 亚基会破坏斑马鱼中的 GPCR 信号转导。

Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish.

机构信息

Carnegie Institution, Department of Embryology, Johns Hopkins University, Baltimore, MD 21218, United States.

出版信息

Cell Signal. 2010 Feb;22(2):221-33. doi: 10.1016/j.cellsig.2009.09.017. Epub 2009 Sep 26.

Abstract

Prenylation of G protein gamma (gamma) subunits is necessary for the membrane localization of heterotrimeric G proteins and for functional heterotrimeric G protein coupled receptor (GPCR) signaling. To evaluate GPCR signaling pathways during development, we injected zebrafish embryos with mRNAs encoding Ggamma subunits mutated so that they can no longer be prenylated. Low-level expression of these prenylation-deficient Ggamma subunits driven either ubiquitously or specifically in the primordial germ cells (PGCs) disrupts GPCR signaling and manifests as a PGC migration defect. This disruption results in a reduction of calcium accumulation in the protrusions of migrating PGCs and a failure of PGCs to directionally migrate. When co-expressed with a prenylation-deficient Ggamma, 8 of the 17 wildtype Ggamma isoforms individually confer the ability to restore calcium accumulation and directional migration. These results suggest that while the Ggamma subunits possess the ability to interact with G Beta (beta) proteins, only a subset of wildtype Ggamma proteins are stable within PGCs and can interact with key signaling components necessary for PGC migration. This in vivo study highlights the functional redundancy of these signaling components and demonstrates that prenylation-deficient Ggamma subunits are an effective tool to investigate the roles of GPCR signaling events during vertebrate development.

摘要

G 蛋白 γ(γ)亚基的prenylation 对于异三聚体 G 蛋白的膜定位和功能性异三聚体 G 蛋白偶联受体(GPCR)信号传导是必要的。为了评估发育过程中的 GPCR 信号通路,我们将编码不能再prenylation 的突变 Gγ亚基的 mRNA 注射到斑马鱼胚胎中。这些prenylation 缺陷的 Gγ亚基在原始生殖细胞(PGCs)中广泛或特异性表达的低水平表达会破坏 GPCR 信号传导,并表现为 PGC 迁移缺陷。这种破坏导致迁移 PGC 的突起中钙积累减少,并且 PGC 不能定向迁移。当与 prenylation 缺陷的 Gγ共表达时,17 种野生型 Gγ同工型中的 8 种各自具有恢复钙积累和定向迁移的能力。这些结果表明,尽管 Gγ亚基具有与 Gβ(β)蛋白相互作用的能力,但只有野生型 Gγ蛋白的一部分在 PGC 中稳定,并能与 PGC 迁移所需的关键信号成分相互作用。这项体内研究强调了这些信号成分的功能冗余性,并表明 prenylation 缺陷的 Gγ亚基是研究脊椎动物发育过程中 GPCR 信号事件的有效工具。

相似文献

1
Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish.
Cell Signal. 2010 Feb;22(2):221-33. doi: 10.1016/j.cellsig.2009.09.017. Epub 2009 Sep 26.
3
Statins Perturb G Signaling and Cell Behavior in a G Subtype Dependent Manner.
Mol Pharmacol. 2019 Apr;95(4):361-375. doi: 10.1124/mol.118.114710. Epub 2019 Feb 14.
4
Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
J Biol Chem. 2018 Feb 23;293(8):2974-2989. doi: 10.1074/jbc.RA117.000872. Epub 2018 Jan 9.
5
Gβγ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity.
Development. 2012 Jan;139(1):57-62. doi: 10.1242/dev.073924. Epub 2011 Nov 17.
6
A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy.
Mol Biol Cell. 2021 Aug 1;32(16):1446-1458. doi: 10.1091/mbc.E20-11-0750. Epub 2021 Jun 9.
8
CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.
J Biol Chem. 2023 Nov;299(11):105269. doi: 10.1016/j.jbc.2023.105269. Epub 2023 Sep 20.
10
G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
Biochem Biophys Res Commun. 2018 Sep 3;503(1):165-170. doi: 10.1016/j.bbrc.2018.05.204. Epub 2018 Jun 11.

引用本文的文献

1
CaaX-motif adjacent residues control G protein prenylation under suboptimal conditions.
bioRxiv. 2023 Jul 4:2023.07.04.547731. doi: 10.1101/2023.07.04.547731.
2
Subtype-dependent regulation of Gβγ signalling.
Cell Signal. 2021 Jun;82:109947. doi: 10.1016/j.cellsig.2021.109947. Epub 2021 Feb 11.
3
Regeneration associated transcriptional signature of retinal microglia and macrophages.
Sci Rep. 2019 Mar 18;9(1):4768. doi: 10.1038/s41598-019-41298-8.
4
Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation.
PLoS One. 2015 Mar 25;10(3):e0121330. doi: 10.1371/journal.pone.0121330. eCollection 2015.
5
Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.
Dev Biol. 2014 Nov 1;395(1):144-53. doi: 10.1016/j.ydbio.2014.08.015. Epub 2014 Aug 28.
6
Gβγ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity.
Development. 2012 Jan;139(1):57-62. doi: 10.1242/dev.073924. Epub 2011 Nov 17.
8
Alkynyl-farnesol reporters for detection of protein S-prenylation in cells.
Mol Biosyst. 2011 Jan;7(1):67-73. doi: 10.1039/c0mb00183j. Epub 2010 Nov 25.
9
Mechanisms guiding primordial germ cell migration: strategies from different organisms.
Nat Rev Mol Cell Biol. 2010 Jan;11(1):37-49. doi: 10.1038/nrm2815.

本文引用的文献

2
Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation.
Development. 2008 Aug;135(15):2521-9. doi: 10.1242/dev.020107. Epub 2008 Jun 25.
3
Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation.
Dev Biol. 2008 Jul 15;319(2):370-83. doi: 10.1016/j.ydbio.2008.04.032. Epub 2008 May 6.
4
High-resolution in situ hybridization to whole-mount zebrafish embryos.
Nat Protoc. 2008;3(1):59-69. doi: 10.1038/nprot.2007.514.
5
Heterotrimeric G protein activation by G-protein-coupled receptors.
Nat Rev Mol Cell Biol. 2008 Jan;9(1):60-71. doi: 10.1038/nrm2299.
7
Expression of the G protein gammaT1 subunit during zebrafish development.
Gene Expr Patterns. 2007 Apr;7(5):574-83. doi: 10.1016/j.modgep.2007.01.003. Epub 2007 Jan 17.
8
Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow.
Dev Cell. 2006 Nov;11(5):613-27. doi: 10.1016/j.devcel.2006.09.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验