Carnegie Institution, Department of Embryology, Johns Hopkins University, Baltimore, MD 21218, United States.
Cell Signal. 2010 Feb;22(2):221-33. doi: 10.1016/j.cellsig.2009.09.017. Epub 2009 Sep 26.
Prenylation of G protein gamma (gamma) subunits is necessary for the membrane localization of heterotrimeric G proteins and for functional heterotrimeric G protein coupled receptor (GPCR) signaling. To evaluate GPCR signaling pathways during development, we injected zebrafish embryos with mRNAs encoding Ggamma subunits mutated so that they can no longer be prenylated. Low-level expression of these prenylation-deficient Ggamma subunits driven either ubiquitously or specifically in the primordial germ cells (PGCs) disrupts GPCR signaling and manifests as a PGC migration defect. This disruption results in a reduction of calcium accumulation in the protrusions of migrating PGCs and a failure of PGCs to directionally migrate. When co-expressed with a prenylation-deficient Ggamma, 8 of the 17 wildtype Ggamma isoforms individually confer the ability to restore calcium accumulation and directional migration. These results suggest that while the Ggamma subunits possess the ability to interact with G Beta (beta) proteins, only a subset of wildtype Ggamma proteins are stable within PGCs and can interact with key signaling components necessary for PGC migration. This in vivo study highlights the functional redundancy of these signaling components and demonstrates that prenylation-deficient Ggamma subunits are an effective tool to investigate the roles of GPCR signaling events during vertebrate development.
G 蛋白 γ(γ)亚基的prenylation 对于异三聚体 G 蛋白的膜定位和功能性异三聚体 G 蛋白偶联受体(GPCR)信号传导是必要的。为了评估发育过程中的 GPCR 信号通路,我们将编码不能再prenylation 的突变 Gγ亚基的 mRNA 注射到斑马鱼胚胎中。这些prenylation 缺陷的 Gγ亚基在原始生殖细胞(PGCs)中广泛或特异性表达的低水平表达会破坏 GPCR 信号传导,并表现为 PGC 迁移缺陷。这种破坏导致迁移 PGC 的突起中钙积累减少,并且 PGC 不能定向迁移。当与 prenylation 缺陷的 Gγ共表达时,17 种野生型 Gγ同工型中的 8 种各自具有恢复钙积累和定向迁移的能力。这些结果表明,尽管 Gγ亚基具有与 Gβ(β)蛋白相互作用的能力,但只有野生型 Gγ蛋白的一部分在 PGC 中稳定,并能与 PGC 迁移所需的关键信号成分相互作用。这项体内研究强调了这些信号成分的功能冗余性,并表明 prenylation 缺陷的 Gγ亚基是研究脊椎动物发育过程中 GPCR 信号事件的有效工具。