Suppr超能文献

纳米流体装置中的寡核苷酸杂交与自由溶液电动分离

Oligonucleotide hybridization and free-solution electrokinetic separation in a nanofluidic device.

作者信息

Huber David E, Markel Marci L, Pennathur Sumita, Patel Kamlesh D

机构信息

Stanford Genome Technology Center, Stanford University, 855 California Avenue, Palo Alto, CA 94305, USA.

出版信息

Lab Chip. 2009 Oct 21;9(20):2933-40. doi: 10.1039/b901739a. Epub 2009 Jul 13.

Abstract

There is significant interest in developing on-chip DNA hybridization assays to leverage the advantages of lab-on-a-chip systems, which include smaller sample and reagent volumes, faster processing speeds, and greater opportunities for large-scale integration. While much research has explored ways to integrate DNA microarrays on-chip, little work has been done to incorporate hybridization with existing microscale separation platforms. We present the first separation of single-stranded and double-stranded oligonucleotides in a nanofluidic device. We couple this separation with free-solution hybridization to develop a simple, electrokinetic technique that detects DNA hybridization without sample labeling. The technique is used both to detect target DNA sequences and to quantitatively measure hybridization kinetics. To demonstrate the method, we measured the second order reaction coefficient of complementary 20-mer oligonucleotides as a function of sodium ion concentration, which ranged from 0.0048 mol(-1).sec(-1) at 5 mM sodium to 0.42 mol(-1).sec(-1) at 50 mM. We also distinguished between a pair of complementary oligonucleotides and a pair with a single nucleotide mismatch, observing a two-fold difference in hybridization rate. Additionally, we observed a relative change in the mobility of single-stranded and double-stranded DNA with increasing sodium concentration, suggesting that our device may provide a useful platform for studying biomolecule transport in nanochannels.

摘要

开发芯片上的DNA杂交检测方法以利用芯片实验室系统的优势引起了人们极大的兴趣,这些优势包括更小的样品和试剂体积、更快的处理速度以及更大的大规模集成机会。虽然许多研究探索了将DNA微阵列集成到芯片上的方法,但在将杂交与现有的微尺度分离平台相结合方面所做的工作很少。我们展示了在纳米流体装置中首次实现单链和双链寡核苷酸的分离。我们将这种分离与自由溶液杂交相结合,开发出一种简单的电动技术,可在不进行样品标记的情况下检测DNA杂交。该技术既用于检测目标DNA序列,也用于定量测量杂交动力学。为了证明该方法,我们测量了互补的20聚体寡核苷酸的二级反应系数与钠离子浓度的函数关系,钠离子浓度范围从5 mM时的0.0048 mol⁻¹·s⁻¹到50 mM时的0.42 mol⁻¹·s⁻¹。我们还区分了一对互补寡核苷酸和一对有一个单核苷酸错配的寡核苷酸,观察到杂交速率有两倍的差异。此外,我们观察到随着钠离子浓度增加,单链和双链DNA迁移率的相对变化,这表明我们的装置可能为研究纳米通道中的生物分子运输提供一个有用的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验