Suppr超能文献

用于在螺旋微通道中连续进行颗粒分离的惯性微流控技术。

Inertial microfluidics for continuous particle separation in spiral microchannels.

作者信息

Kuntaegowdanahalli Sathyakumar S, Bhagat Ali Asgar S, Kumar Girish, Papautsky Ian

机构信息

Department of Electrical and Computer Engineering, 814 Rhodes Hall, ML030, University of Cincinnati, Cincinnati, OH 45221, USA.

出版信息

Lab Chip. 2009 Oct 21;9(20):2973-80. doi: 10.1039/b908271a. Epub 2009 Jul 21.

Abstract

In this work we report on a simple inertial microfluidic device that achieves continuous multi-particle separation using the principle of Dean-coupled inertial migration in spiral microchannels. The dominant inertial forces coupled with the Dean rotational force due to the curvilinear microchannel geometry cause particles to occupy a single equilibrium position near the inner microchannel wall. The position at which particles equilibrate is dependent on the ratio of the inertial lift to Dean drag forces. Using this concept, we demonstrate, for the first time, a spiral lab-on-a-chip (LOC) for size-dependent focusing of particles at distinct equilibrium positions across the microchannel cross-section from a multi-particle mixture. The individual particle streams can be collected with an appropriately designed outlet system. To demonstrate this principle, a 5-loop Archimedean spiral microchannel with a fixed width of 500 microm and a height of 130 microm was used to simultaneously and continuously separate 10 microm, 15 microm, and 20 microm polystyrene particles. The device exhibited 90% separation efficiency. The versatility of the device was demonstrated by separating neuroblastoma and glioma cells with 80% efficiency and high relative viability (>90%). The achieved throughput of approximately 1 million cells/min is substantially higher than the sorting rates reported by other microscale sorting methods and is comparable to the rates obtained with commercial macroscale flow cytometry techniques. The simple planar structure and high throughput offered by this passive microfluidic approach make it attractive for LOC devices in biomedical and environmental applications.

摘要

在这项工作中,我们报道了一种简单的惯性微流控装置,该装置利用螺旋微通道中迪恩耦合惯性迁移原理实现连续多颗粒分离。由于微通道呈曲线形,主导惯性力与迪恩旋转力相互耦合,使颗粒在微通道内壁附近占据单一平衡位置。颗粒达到平衡的位置取决于惯性升力与迪恩阻力的比值。利用这一概念,我们首次展示了一种螺旋式片上实验室(LOC),可将多颗粒混合物中的颗粒按尺寸聚焦在微通道横截面上不同的平衡位置。可以通过适当设计的出口系统收集各个颗粒流。为了验证这一原理,使用了一个固定宽度为500微米、高度为130微米的5圈阿基米德螺旋微通道,同时连续分离10微米、15微米和20微米的聚苯乙烯颗粒。该装置的分离效率达到90%。通过以80%的效率和高相对活力(>90%)分离神经母细胞瘤和胶质瘤细胞,证明了该装置的多功能性。所实现的约100万个细胞/分钟的通量显著高于其他微尺度分选方法报道的分选速率,并且与商业宏观流式细胞术技术获得的速率相当。这种被动式微流控方法提供的简单平面结构和高通量使其在生物医学和环境应用中的LOC装置方面具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验