Wang Lisen, Lu Jente, Marchenko Steven A, Monuki Edwin S, Flanagan Lisa A, Lee Abraham P
Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
Electrophoresis. 2009 Mar;30(5):782-91. doi: 10.1002/elps.200800637.
This paper presents a novel design and separation strategy for lateral flow-through separation of cells/particles in microfluidics by dual frequency coupled dielectrophoresis (DEP) forces enabled by vertical interdigitated electrodes embedded in the channel sidewalls. Unlike field-flow-fractionation-DEP separations in microfluidics, which utilize planar electrodes on the microchannel floor to generate a DEP force to balance the gravitational force and separate objects at different height locations, lateral separation is enabled by sidewall interdigitated electrodes that are used to generate non-uniform electric fields and balanced DEP forces along the width of the microchannel. In the current design, two separate AC electric fields are applied to two sets of independent interdigitated electrode arrays fabricated in the sidewalls of the microchannel to generate differential DEP forces that act on the cells/particles flowing through. Individual particles (cells or beads) will experience DEP forces differently due to the difference in their dielectric properties. The balance of the differential DEP forces from the electrode arrays will position dissimilar particles at distinct equilibrium planes across the width of the channel. When coupled with fluid flow, this results in lateral separation along the width of the microchannel and the separated particles can thus be automatically directed into branched channel outlets leading to different reservoirs for downstream processing. In this paper, we present the design and analysis of lateral separation enabled by dual frequency coupled DEP, and cell/bead and cell/cell separations are demonstrated with this lateral separation strategy. With vertical interdigitated electrodes on the sidewall, the height of the microchannel can be increased without losing the electric field strength in contrast to other multiple frequency DEP devices with planar electrodes. As a result, populations of cells can be separated simultaneously instead of one by one to enable high-throughput sorting microfluidic devices.
本文提出了一种新颖的设计和分离策略,用于在微流控中通过嵌入通道侧壁的垂直叉指电极产生的双频耦合介电泳(DEP)力对细胞/颗粒进行横向流通分离。与微流控中的场流分级DEP分离不同,后者利用微通道底部的平面电极产生DEP力来平衡重力并分离不同高度位置的物体,而横向分离是通过侧壁叉指电极实现的,这些电极用于在微通道宽度方向上产生不均匀电场和平衡的DEP力。在当前设计中,两个独立的交流电场分别施加到微通道侧壁上制造的两组独立叉指电极阵列上,以产生作用于流经的细胞/颗粒的差分DEP力。由于其介电特性的差异,单个颗粒(细胞或珠子)将经历不同的DEP力。来自电极阵列的差分DEP力的平衡将使不同的颗粒定位在通道宽度上不同的平衡平面上。当与流体流动相结合时,这会导致沿微通道宽度的横向分离,分离出的颗粒因此可以自动导入分支通道出口,通向不同的储液器以进行下游处理。在本文中,我们展示了双频耦合DEP实现的横向分离的设计和分析,并使用这种横向分离策略演示了细胞/珠子和细胞/细胞的分离。与其他具有平面电极的多频DEP设备相比,通过在侧壁上设置垂直叉指电极,可以在不损失电场强度的情况下增加微通道的高度。因此,可以同时分离细胞群体,而不是逐个分离,从而实现高通量分选微流控设备。