GlaxoSmithKline, Durham, NC, 27709, USA.
J Pharmacokinet Pharmacodyn. 2009 Oct;36(5):443-59. doi: 10.1007/s10928-009-9132-x. Epub 2009 Sep 30.
Patients that are exposed to biotechnology-derived therapeutics often develop antibodies to the therapeutic, the magnitude of which is assessed by measuring antibody titers. A statistical approach for analyzing antibody titer data conditional on seroconversion is presented. The proposed method is to first transform the antibody titer data based on a geometric series using a common ratio of 2 and a scale factor of 50 and then analyze the exponent using a zero-inflated or hurdle model assuming a Poisson or negative binomial distribution with random effects to account for patient heterogeneity. Patient specific covariates can be used to model the probability of developing an antibody response, i.e., seroconversion, as well as the magnitude of the antibody titer itself. The method was illustrated using antibody titer data from 87 male seroconverted Fabry patients receiving Fabrazyme. Titers from five clinical trials were collected over 276 weeks of therapy with anti-Fabrazyme IgG titers ranging from 100 to 409,600 after exclusion of seronegative patients. The best model to explain seroconversion was a zero-inflated Poisson (ZIP) model where cumulative dose (under a constant dose regimen of dosing every 2 weeks) influenced the probability of seroconversion. There was an 80% chance of seroconversion when the cumulative dose reached 210 mg (90% confidence interval: 194-226 mg). No difference in antibody titers was noted between Japanese or Western patients. Once seroconverted, antibody titers did not remain constant but decreased in an exponential manner from an initial magnitude to a new lower steady-state value. The expected titer after the new steady-state titer had been achieved was 870 (90% CI: 630-1109). The half-life to the new steady-state value after seroconversion was 44 weeks (90% CI: 17-70 weeks). Time to seroconversion did not appear to be correlated with titer at the time of seroconversion. The method can be adequately used to model antibody titer data.
接受生物技术衍生疗法治疗的患者通常会对治疗药物产生抗体,其抗体滴度通过测量抗体效价来评估。本文提出了一种分析条件性抗体效价数据的统计方法。该方法首先基于几何级数,使用公比为 2、尺度因子为 50 对抗体效价数据进行转换,然后根据泊松分布或负二项分布,使用零膨胀或门控模型来分析指数,同时还假设存在随机效应以解释患者间的异质性。患者特有的协变量可用于建立抗体反应(即血清转化率)和抗体效价本身的概率模型。本文使用接受 Fabrazyme 治疗的 87 例男性 Fabry 患者的血清转化率数据来举例说明该方法。在排除血清阴性患者后,共收集了五项临床试验中 276 周的抗-Fabrazyme IgG 效价数据,效价范围为 100-409600。解释血清转化率的最佳模型是零膨胀泊松(ZIP)模型,其中累积剂量(在每 2 周恒定剂量给药的方案下)影响血清转化率的概率。当累积剂量达到 210mg 时,血清转化率达到 80%(90%置信区间:194-226mg)。日本和西方患者之间的抗体效价没有差异。一旦发生血清转化率,抗体效价不会保持不变,而是以指数方式从初始幅度下降到新的较低稳定状态值。达到新的稳定状态效价后,预期效价为 870(90%置信区间:630-1109)。血清转化率后的半衰期达到新的稳定状态值为 44 周(90%置信区间:17-70 周)。血清转化率与血清转化率时的效价之间似乎没有相关性。该方法可以充分用于建模抗体效价数据。