Carmel High School, Carmel, Indiana 46032, USA.
Chaos. 2009 Sep;19(3):033115. doi: 10.1063/1.3176943.
Regulatory molecular networks have numerous pharmacological and medical applications. The oscillatory mechanisms and the role of oscillations in these regulatory networks are not fully understood. In this paper, we explore two oscillatory mechanisms: the hysteresis-based relaxation oscillator and the repressilator. We combine these mechanisms into one regulatory network so that only two parameters, the strength of an additional regulatory connection and the timescale separation for one of the variables, control the transition from one mechanism to the other. Our data support a qualitative difference between the oscillatory mechanisms, but in the parameter space, we found a single oscillatory region, suggesting that the two mechanisms support each other. We examine interactions in a basic population: that is, a pair of the composite oscillators. We found that the relaxation oscillation mechanism is much more resistant to oscillatory death as the cells are diffusively coupled in a population. Additionally, stationary pattern formation has been found to accompany the relaxation oscillation but not the repressilator mechanism. These properties may guide the identification of oscillatory mechanisms in complex natural regulatory networks.
调控分子网络在药理学和医学领域有许多应用。尽管这些调控网络的振荡机制和振荡的作用还没有被完全理解,但我们在本文中探讨了两种振荡机制:基于滞后的弛豫振荡器和阻遏子振荡器。我们将这两种机制结合到一个调控网络中,使得只有两个参数——一个附加调控连接的强度和一个变量的时间尺度分离——可以控制从一种机制到另一种机制的转变。我们的数据支持这两种振荡机制之间存在定性差异,但在参数空间中,我们发现了一个单一的振荡区域,这表明这两种机制是相互支持的。我们在基本的群体中研究了相互作用:即一对复合振荡器。我们发现,随着细胞在群体中扩散耦合,弛豫振荡器机制对振荡死亡的抵抗力要强得多。此外,我们发现,在弛豫振荡器机制中存在固定模式形成,而在阻遏子振荡器机制中则没有。这些特性可能有助于识别复杂自然调控网络中的振荡机制。