Division of Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993, USA.
Chaos. 2009 Sep;19(3):033118. doi: 10.1063/1.3204256.
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.
在许多生物和物理系统中都观察到了旋转螺旋波。这些螺旋波可以是静止的、蜿蜒的,甚至退化成分散的不稳定旋转波。通过跟踪螺旋波尖端轨迹,对螺旋波的时空行为进行了广泛的量化。然而,确定螺旋波尖端的精确方法及其对特定行为模式的影响仍然是一个很大程度上未被探索的研究课题。在这里,我们使用双变量 FitzHugh-Nagumo 模型来模拟静止和蜿蜒的螺旋波,并检查系统状态变量在真实(即物理)和状态空间中的时空表示。我们表明,这两个空间之间的映射提供了一种方法,可以将螺旋波尖端标记为潜在非线性偏微分方程解的旋转中心。这种方法通过消除螺旋波旋转分量产生的部分,得到最简单的尖端轨迹。