Krasovskii Institute of Mathematics and Mechanics, 620108 Ekaterinburg, Russia and Ural Federal University, High-Performance Computing Department, 620002 Ekaterinburg, Russia.
Krasovskii Institute of Mathematics and Mechanics, 620108 Ekaterinburg, Russia and Ural Federal University, Mathematical Analysis Department, 620002 Ekaterinburg, Russia.
Phys Rev E. 2023 Jan;107(1-1):014215. doi: 10.1103/PhysRevE.107.014215.
One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.
旋转螺旋波在兴奋介质中最有趣的动态之一是蜿蜒。蜿蜒螺旋波的尖端沿着复杂的轨迹移动,其形状通常为内摆线或外摆线,具有向内或向外的花瓣。蜿蜒螺旋波的周期长度(CL)不是恒定的;相反,它们取决于蜿蜒的动力学。在本文中,我们表明 CL 取两个平均值,在蜿蜒轨迹的外部 T^{out}和内部 T^{in},对于向内的花瓣,其比值为 T^{in}/T^{out}=(n+1)/n,对于向外的花瓣,其比值为 T^{in}/T^{out}=(n-1)/n,其中 n 是尖端轨迹的花瓣数。我们使用四个兴奋介质模型来说明这一点,并证明了这一结果。这些公式适用于心脏解剖模型中的蜿蜒螺旋波。我们还表明,蜿蜒螺旋波的超速起搏的有效周期取决于电极相对于尖端轨迹的位置。总体而言,我们的方法可用于从 CL 数据研究蜿蜒模式;它应该适用于产生螺旋波尖端复杂轨迹的任何类型的动力学,例如由于各向异性引起的漂移。