Suppr超能文献

关于某些离散向量场中的嵌入分岔结构。

On embedded bifurcation structure in some discretized vector fields.

机构信息

Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Japan.

出版信息

Chaos. 2009 Sep;19(3):033132. doi: 10.1063/1.3212934.

Abstract

In this paper, we study a dynamic structure of discretized vector fields obtained from the Brusselator, which is described by two-dimensional ordinary differential equations (ODEs). We found that a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the solution of the original ODEs.

摘要

在本文中,我们研究了由二维常微分方程(ODE)描述的布鲁塞尔ator 离散化向量场的动态结构。我们发现,逻辑映射的分岔结构嵌入在离散化向量场中。通过最终收敛到一个平衡点的动力学轨道,揭示了嵌入的分岔结构。我们提供了详细的数学分析来解释这一现象,并将其与原始 ODE 的解联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验