Nisoli Cristiano
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026110. doi: 10.1103/PhysRevE.80.026110. Epub 2009 Aug 11.
A protean topological soliton has recently been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here, we present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as locked speed, screw shift, energy transport, and--for Wigner crystal on a nanotube--charge transport. The treatment is general and should apply to other spiraling systems. Unlike, e.g., sine-Gordon-like systems, our soliton can exist between nondegenerate structures and its dynamics extends to the domains it separates; we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on nanotubes or A - to B -DNA transitions.
最近发现,在圆柱几何结构中的排斥粒子系统中会出现一种具有多种形态的拓扑孤子,其静态特性由叶序的数论对象描述。在此,我们提出一个最小化的局部连续统模型,该模型可以解释叶序孤子的许多特征,如锁定速度、螺旋位移、能量传输,以及对于纳米管上的维格纳晶体而言的电荷传输。这种处理方法具有普遍性,应该适用于其他螺旋系统。与例如类正弦-戈登系统不同,我们的孤子可以存在于非简并结构之间,并且其动力学扩展到它所分隔的区域;我们还预测了静态和动态的脉冲。应用包括纳米管上维格纳晶体中的电荷传输或A - 到B - DNA转变。