Suppr超能文献

Simple lattice Boltzmann subgrid-scale model for convectional flows with high Rayleigh numbers within an enclosed circular annular cavity.

作者信息

Chen Sheng, Tölke Jonas, Krafczyk Manfred

机构信息

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026702. doi: 10.1103/PhysRevE.80.026702. Epub 2009 Aug 11.

Abstract

Natural convection within an enclosed circular annular cavity formed by two concentric vertical cylinders is of fundamental interest and practical importance. Generally, the assumption of axisymmetric thermal flow is adopted for simulating such natural convections and the validity of the assumption of axisymmetric thermal flow is still held even for some turbulent convection. Usually the Rayleigh numbers (Ra) of realistic flows are very high. However, the work to design suitable and efficient lattice Boltzmann (LB) models on such flows is quite rare. To bridge the gap, in this paper a simple LB subgrid-scale (SGS) model, which is based on our recent work [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)], is proposed for simulating convectional flow with high Ra within an enclosed circular annular cavity. The key parameter for the SGS model can be quite easily and efficiently evaluated by the present model. The numerical experiments demonstrate that the present model works well for a large range of Ra and Prandtl number (Pr). Though in the present study a popularly used static Smagorinsky turbulence model is adopted to demonstrate how to develop a LB SGS model for simulating axisymmetric thermal flows with high Ra, other state-of-the-art turbulence models can be incorporated into the present model in the same way. In addition, the present model can be extended straightforwardly to simulate other axisymmetric convectional flows with high Ra, for example, turbulent convection with internal volumetric heat generation in a vertical cylinder, which is an important simplified representation of a nuclear reactor.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验